Suarezlindgreen2954

Z Iurium Wiki

Verze z 29. 10. 2024, 21:40, kterou vytvořil Suarezlindgreen2954 (diskuse | příspěvky) (Založena nová stránka s textem „From the results, the qualities of upgraded bio-oil were substantially improved for all catalysts tested in terms of oxygen reduction and increased high he…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

From the results, the qualities of upgraded bio-oil were substantially improved for all catalysts tested in terms of oxygen reduction and increased high heating value (HHV). Particularly, the NiMo/Al2O3 catalyst exhibited the most promising catalyst, providing favorable bio-oil yield and HHV. Remarkably greater energy ratios and carbon recovery together with high H/O, C/O, and H/C ratios were additionally achieved from the NiMo/Al2O3 catalyst compared with other catalysts. Cyclopentanone and cyclopentene were the main olefins found in hydrodeoxygenated bio-oil derived from liquefied EFB. It was observed that cyclopentene was first generated and subsequently converted to cyclopentanone under the hydrogenation reaction. These compounds can be further used as a building block in the synthesis of jet-fuel range cycloalkanes.In oil and gas production in deep-water high-pressure-high-temperature (HP-HT) wells, wellhead uplift may cause the seal failure of wellbore integrity. Aiming at the oil and gas production stage in deep-water HP-HT wells, we considered the influence of cement sheath cementation and developed a model for calculating the height of wellhead uplifts, and simulation experiments for wellhead uplifts were carried out under the condition of the double pipe string at different cement return heights and multilayer pipe string coupling cementing and noncementing based on a self-developed HP-HT wellhead uplift simulation device. The results show that the elongation of the double pipe string under the condition of a cement return height of 100% is reduced significantly compared with that under the condition of a cement return height of 50%. Also, the maximum elongation of the multilayer pipe string under the condition of coupling and cementing is significantly reduced compared with that under the condition of noncementing. These show that cement sealing has a binding effect on wellhead uplifts. The error between the calculated and the experimental results is less than 10%; thus, the model can be used to predict the wellhead uplift height under different working conditions and provide technical guidance for designing scientific measures to prevent wellhead uplifts.Doxorubicin hydrochloride (DOX) is currently used to treat orthotropic and metastatic breast cancer. Simvastatin price Because of its side effects, the use of DOX in cancer patients is sometimes limited; for this reason, several scientists tried designing drug delivery systems which can improve drug therapeutic efficacy and decrease its side effects. In this study, we designed, prepared, and physiochemically characterized nonionic surfactant vesicles (NSVs) which are obtained by self-assembling different combinations of hydrophilic (Tween 20) and hydrophobic (Span 20) surfactants, with cholesterol. DOX was loaded in NSVs using a passive and pH gradient remote loading procedure, which increased drug loading from ∼1 to ∼45%. NSVs were analyzed in terms of size, shape, size distribution, zeta potential, long-term stability, entrapment efficiency, and release kinetics, and nanocarriers having the best physiochemical parameters were selected for further in vitro tests. NSVs with and without DOX were stable and showed a sustained drug release up to 72 h. In vitro studies, with MCF-7 and MDA MB 468 cells, demonstrated that NSVs, containing Span 20, were better internalized in MCF-7 and MDA MB 468 cells than NSVs with Tween 20. NSVs increased the anticancer effect of DOX in MCF-7 and MDA MB 468 cells, and this effect is time and dose dependent. In vitro studies using metastatic and nonmetastatic breast cancer cells also demonstrated that NSVs, containing Span 20, had higher cytotoxicity than NSVs with Tween 20. The resulting data suggested that DOX-loaded NSVs could be a promising nanocarrier for the potential treatment of metastatic breast cancer.Recently, a newly discovered VIB group transition metal dichalcogenide (TMD) material, 2M-WS2, has attracted extensive attention due to its interesting physical properties such as topological superconductivity, nodeless superconductivity, and anisotropic Majorana bound states. However, the techniques to grow high-quality 2M-WS2 bulk crystals and the study of their physical properties at the nanometer scale are still limited. In this work, we report a new route to grow high-quality 2M-WS2 single crystals and the observation of superconductivity in its thin layers. The crystal structure of the as-grown 2M-WS2 crystals was determined by X-ray diffraction (XRD) and scanning tunneling microscopy (STM). The chemical composition of the 2M-WS2 crystals was determined by energy dispersive X-ray spectroscopy (EDS) analysis. At 77 K, we observed the spatial variation of the local tunneling conductance (dI/dV) of the 2M-WS2 thin flakes by scanning tunneling spectroscopy (STS). Our low temperature transport measurements demonstrate clear signatures of superconductivity of a 25 nm-thick 2M-WS2 flake with a critical temperature (TC) of ∼8.5 K and an upper critical field of ∼2.5 T at T = 1.5 K. Our work may pave new opportunities in studying the topological superconductivity at the atomic scale in simple 2D TMD materials.A new trend is emerging that flexible batteries will play an indispensable role in the progress of social science and technology. However, flexibility exists only in a single direction for the existing electrode material. Searching for flexible battery materials has attracted more and more attention from researchers. In this article, the lattice structural stability, electronic structure modulation, and the Li adsorption properties of the heterostructures designed by assembling GeP3 and NbX2 (X = S, Se) together were methodically explored based on van der Waals. We found that diffusion barrier of the GeP3/NbS2 heterostructure with metallic properties is 0.21 eV for Li. It greatly improves the charge and discharge performance of the battery. The predicted heterostructure shows quite high theoretical specific capacity with 540.24 mA h/g, which is higher than the traditional graphite anode (372 mA h/g). It demonstrates superior isotropic flexibility with a considerable small Young's modulus (151.98-159.02 N/m), which has promising application as flexible electrodes for rechargeable battery equipment.

Autoři článku: Suarezlindgreen2954 (Rodgers Crockett)