Oneillrosa1368

Z Iurium Wiki

Verze z 28. 10. 2024, 19:09, kterou vytvořil Oneillrosa1368 (diskuse | příspěvky) (Založena nová stránka s textem „We focus on selected examples of pathogenic mechanisms involving ATRX, histone methyltransferase G9a, histone acetylases/deacetylases and chromatin remodel…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We focus on selected examples of pathogenic mechanisms involving ATRX, histone methyltransferase G9a, histone acetylases/deacetylases and chromatin remodeling complexes SMARCA2/4. We discuss the impact of selected epigenetics alterations on glioma pathobiology, signaling and therapeutic responses. We assess the attempts of targeting defective pathways with new inhibitors.The observations that numerous cancers are characterized by impairment in arginine synthesis and that deficit of exogenous arginine specifically affects their growth and viability are the ground for arginine deprivation-based anticancer treatment strategy. This review addresses molecular mechanisms of the human glioblastoma cell response to arginine deprivation. Our earlier studies have shown that arginine deprivation specifically impairs glioblastoma cell motility, adhesion and invasiveness. These changes were evoked by alterations in the actin cytoskeleton organization resulting from a decreased arginylation of β-actin isoform. selleck Moreover, deficit of arginine induces prolonged endoplasmic reticulum (ER) stress and activation of the unfolded protein response, not leading, however, to a massive apoptosis in glioblastoma cells. Our current research indicates that cell death could be augmented by other compounds such as modulators of ER stress, for example arginine analogue of plant origin, canavanine. Implication of these studies on the development of new anti-glioma metabolic therapeutic modalities are discussed.Cannabinoids are a group of structurally heterogeneous but pharmacologically related compounds, including plant-derived cannabinoids, synthetic substances and endogenous cannabinoids, such as anandamide and 2-arachidonoylglycerol. Cannabinoids elicit a wide range of central and peripheral effects mostly mediated through cannabinoid receptors. There are two types of specific Gi/o-protein-coupled receptors cloned so far, called CB1 and CB2, although an existence of additional cannabinoid-binding receptors has been suggested. CB1 and CB2 differ in their predicted amino acid sequence, tissue distribution, physiological role and signaling mechanisms. Significant alterations of a balance in the cannabinoid system between the levels of endogenous ligands and their receptors occur during malignant transformation in various types of cancer, including gliomas. Cannabinoids exert anti-proliferative action in tumor cells. Induction of cell death by cannabinoid treatment relies on the generation of a pro-apoptotic sphingolipid ceramide and disruption of signaling pathways crucial for regulation of cellular proliferation, differentiation or apoptosis. Increased ceramide levels lead also to ER-stress and autophagy in drug-treated glioblastoma cells. Beyond blocking of tumor cells proliferation cannabinoids inhibit invasiveness, angiogenesis and the stem cell-like properties of glioma cells, showing profound activity in the complex tumor microenvironment. Advances in translational research on cannabinoid signaling led to clinical investigations on the use of cannabinoids in treatments of glioblastomas.STAT (signal transducers and activators of transcription) are latent cytoplasmic transcription factors that function as downstream effectors of cytokine and growth factor receptor signaling. The canonical JAK/STAT signaling pathway involves the activation of Janus kinases (JAK) or growth factors receptor kinases, phosphorylation of STAT proteins, their dimerization and translocation into the nucleus where STATs act as transcription factors with pleiotropic downstream effects. STAT signaling is tightly controlled with restricted kinetics due to action of its negative regulators. While STAT1 is believed to play an important role in growth arrest and apoptosis, and to act as a tumor suppressor, STAT3 and 5 are involved in promoting cell cycle progression, cellular transformation, and preventing apoptosis. Aberrant activation of STATs, in particular STAT3 and STAT5, have been found in a large number of human tumors, including gliomas and may contribute to oncogenesis. In this chapter, we have (1) summarized the mechanisms of STAT activation in normal and malignant signaling; (2) discussed evidence for the critical role of constitutively activated STAT3 and STAT5 in glioma pathobiology; (3) disclosed molecular and pharmacological strategies to interfere with STAT signaling for potential therapeutic intervention in gliomas.Transforming growth factor beta (TGF-β) signaling is involved in the regulation of proliferation, differentiation and survival/or apoptosis of many cells, including glioma cells. TGF-β acts via specific receptors activating multiple intracellular pathways resulting in phosphorylation of receptor-regulated Smad2/3 proteins that associate with the common mediator, Smad4. Such complex translocates to the nucleus, binds to DNA and regulates transcription of many genes. Furthermore, TGF-β-activated kinase-1 (TAK1) is a component of TGF-β signaling and activates mitogen-activated protein kinase (MAPK) cascades. Negative regulation of TGF-β/Smad signaling may occur through the inhibitory Smad6/7. While genetic alterations in genes related to TGF-β signaling are relatively rare in gliomas, the altered expression of those genes is a frequent event. The increased expression of TGF-β1-3 correlates with a degree of malignancy of human gliomas. TGF-β may contribute to tumor pathogenesis in many ways by direct support of tumor growth, by maintaining self-renewal of glioma initiating stem cells and inhibiting anti-tumor immunity. Glioma initiating cells are dedifferentiated cells that retain many stem cell-like properties, play a role in tumor initiation and contribute to its recurrence. TGF-β1,2 stimulate expression of the vascular endothelial growth factor as well as the plasminogen activator inhibitor and some metalloproteinases that are involved in vascular remodeling, angiogenesis and degradation of the extracellular matrix. Inhibitors of TGF-β signaling reduce viability and invasion of gliomas in animal models and show a great promise as novel, potential anti-tumor therapeutics.

Autoři článku: Oneillrosa1368 (Eason Jernigan)