Mccarthyellis4730

Z Iurium Wiki

Verze z 28. 10. 2024, 17:15, kterou vytvořil Mccarthyellis4730 (diskuse | příspěvky) (Založena nová stránka s textem „Purification and concentration of DNA is a critical step on DNA-based analysis, which should ensure efficient DNA isolation and effective removal of contam…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Purification and concentration of DNA is a critical step on DNA-based analysis, which should ensure efficient DNA isolation and effective removal of contaminants that may interfere with downstream DNA amplification. Complexity of samples, minute content of target analyte, or high DNA fragmentation greatly entangles the success of this step. To overcome this issue, we designed and fabricated a novel miniaturized disposable device for a highly efficient DNA purification. The microfluidic device showed binding efficiency and elution yield of 90.1% and 86.7%, respectively. Moreover, the effect of DNA fragmentation, a parameter that has not been previously addressed, showed a great impact in the recovery step. The microfluidic system integrated micropillars with chitosan being used as the solid-phase for a pH-dependent DNA capture and release. We have showed the potential of the device in the successful purification of environmental DNA (eDNA) from river water samples contaminated with Dreissena polymorpha, an invasive alien species responsible for unquestionable economic and environmental consequences in river water basins. Additionally, the device was also able to concentrate the DNA extract from highly diluted samples, showing promising results for the early detection of such invasive species, which may allow prompt measures for a more efficient control in affected areas. Suitability for integration with downstream DNA analysis was also demonstrated through qPCR analysis of the samples purified with the microfluidic device, allowing detection of the target species even if highly diluted.A revolutionary impact on the pharmaceutical and biomedical applications has been arisen in the few years to come as a result of the advances made in magnetic nanoparticles (MNPs) research. The use of MNPs opens wide opportunities in diagnostics, drug and gene delivery, in vivo imaging, magnetic separation, and hyperthermia therapy, etc. Besides, their possible integration in sensors makes them an ideal essential element of innovative pharmaceutical and biomedical applications. Nowadays, MNPs-based electrochemical sensors have attracted great attention to pharmaceutical and biomedical applications owing to their high sensitivity, stability. Selectivity towards the target as well as their simplicity of manufacture. Therefore, this review focus on recent advances with cutting-edge approaches dealing with the synthesis, design, and advantageous analytical performance of MNPs in the electrochemical sensors utilized for pharmaceutical and biomedical applications between 2015 and 2020. The challenges existing in this research area and some potential strategies/future perspectives for the rational design of electrochemical sensors are also outlined.The free fatty acids that contain one to eight carbons (C1-C8) in biodiesel would affect the quality of biodiesel. It is still a matter of challenge to simultaneously determine the composition of C1-C8 fatty acids in seed oil and seed oil-based biodiesel. Herein, a novel method of charge derivatization coupling with direct infusion mass spectrometry (CD-DIMS) was developed for the determination of the C1-C8 fatty acids in biodiesels. A fixed-charge derivatization reagent, 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide (CMCT), was used to convert fatty acids into their cationic derivatives, which significantly improved the sensitivity and selectivity of detection. Good linearity was observed with the limits of detection (LODs) in the range of 0.0002-0.001 μg mL-1 for the investigated fatty acids. The recovery was in the range of 85.1%-101.9% and the matrix effect was within the range of 75.5-93.2%. The developed method was carried out to analyze C1-C8 fatty acids in rubber seed oil (RSO) and RSO-based biodiesels produced by different catalysts, including NaOH, TiO2, and carbodiimide. It was also applied to the dynamic monitoring of C1-C8 fatty acids in RSO and produced RSO biodiesels during the oxidation process. As results, formic acid, acetic acid, and propionic acid were detected in aged RSO and biodiesel samples. The contents of formic acid, acetic acid, and propionic acid all increased in aged RSO and biodiesels, but with different growth rates. These results demonstrated that the developed CD-DIMS method can provide a quick, accurate, and sensitive analysis of C1-C8 fatty acids in seed oil and biodiesel samples.A simple and rapid microextraction procedure is reported on the use of ionic liquid (IL) in combination with magnetic multiwalled carbon nanotubes (MMWCNTs). The procedure is based on temperature-controlled IL dispersive liquid phase microextraction (DLPME) and MMWCNTs, for selective preconcentration of N-methylcarbamate pesticides in water samples, followed by their hydrolysis in alkaline buffer, prior to being analyzed by capillary electrophoresis. The extraction procedure uses small volume of organic solvents, and there is no need for centrifugation. In the experimental approach the IL was quickly disrupted by an ultrasonic probe, heated with the temperature controlled at 90 °C and dispersed in water samples in a homogenous form. At this stage, N-methylcarbamate pesticides migrate into the IL. Selleckchem PRGL493 Then the solution was cooled and small amounts of MMWCNTs were dispersed into the sample solutions to adsorb the ionic liquid containing the analytes and phase separation was completed. The ionic liquid allowed the microextraction of the analytes and a small volume of dichloromethane (DCM) was used for elution. MMWCNTs favored the adsorption of the ionic liquid with the analytes and improved the final recovery with respect to the use of simple magnetic nanoparticles as a sorbent material. Under the optimum conditions, limit of quantifications (LOQ) were achieved in the 5.6-9.3 ng mL-1 range, with recoveries between 85.0% and 102.4%.In this manuscript, a layer of 2-methylimidazole zinc salt (ZIF-8) membrane is deposited on the surface of glassy carbon electrode (GCE) modified with platinum nanoparticles (Pt NPs) by reduction electrochemical method to obtain ZIF-8/Pt NPs/GCE, and then used for the detection of ascorbic acid (AA). The deposition of Pt NPs on the surface of GCE can not only guide the nucleation and growth of ZIF-8 membrane, but also exert a synergistic effect with it to enhance conductivity. For ZIF-8 membrane, it can increase the active area of electrode and thus improve the electrochemical response of the sensor for AA. Influence factors such as the deposition current density, deposition time on the surface morphology of the modified electrode, and the detection performance of the modified electrode during the electrochemical deposition of ZIF-8 membrane were explored to get the best performance. In addition, influence of conditions such as sweep speed and pH of the test solution on the electrochemical response signal of AA were also studied.

Autoři článku: Mccarthyellis4730 (Stark Krause)