Handbergmccracken2219

Z Iurium Wiki

Verze z 28. 10. 2024, 16:23, kterou vytvořil Handbergmccracken2219 (diskuse | příspěvky) (Založena nová stránka s textem „The fire at the Intercontinental Terminals Company (ITC, Deer Park, La Porte, TX, USA) from March 17 to 20, 2019 resulted in substantial releases of chemic…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The fire at the Intercontinental Terminals Company (ITC, Deer Park, La Porte, TX, USA) from March 17 to 20, 2019 resulted in substantial releases of chemical contaminants to the environment, including the surface waters of the Houston Ship Channel.

To characterize spatial and temporal trends, as well as potential human health risks, from these releases.

Out of 433 substances with available data, seven were selected for analysis benzene, toluene, ethylbenzene, xylenes, oil and grease, suspended solids, and total petroleum hydrocarbons. Spatial and temporal concentration trends were characterized, and hazard quotients and cancer risks were calculated to estimate the potential for human health impacts from these contaminants.

Temporal analysis showed presence of these chemical contaminants in water immediately after the event; their concentrations dissipated substantially within 4 weeks. The spatial distribution of contaminants indicated the highest concentrations in the waterways within about 1 km of the ITC. The greatest potential human health risks stemmed from presence of benzene.

A short-term but substantial spike in the concentrations of a number of hazardous contaminants occurred near the incident, with concentrations returning to apparent baseline levels within 1 month likely due to a combination of volatization, dilution and degradation.

A short-term but substantial spike in the concentrations of a number of hazardous contaminants occurred near the incident, with concentrations returning to apparent baseline levels within 1 month likely due to a combination of volatization, dilution and degradation.

Soil ingestion is a critical, yet poorly characterized route of exposure to contaminants, particularly for agricultural workers who have frequent, direct contact with soil.

This qualitative investigation aims to identify and characterize key considerations for translating agricultural workers' soil ingestion experiences into recommendations to improve traditional exposure science tools for estimating soil ingestion.

We conducted qualitative in-depth interviews with 16 fruit and vegetable growers in Maryland to characterize their behaviors and concerns regarding soil contact in order to characterize the nature of soil ingestion in the agricultural context.

We identified and discussed four emergent themes (1) variability in growers' descriptions of soil and dust, (2) variability in growers' soil contact, (3) growers' concerns regarding soil contact, (4) growers' practices to modify soil contact. We also identified environmental and behavioral factors and six specific agricultural tasks that may impact soil ingestion rates.

Our investigation fills an important gap in occupational exposure science methodology by providing four key considerations that should be integrated into indirect measurement tools for estimating soil ingestion rates in the agricultural context. Specifically, a task-based framework may provide a structure for future investigations of soil contact that may be useful in other populations.

Our investigation fills an important gap in occupational exposure science methodology by providing four key considerations that should be integrated into indirect measurement tools for estimating soil ingestion rates in the agricultural context. Specifically, a task-based framework may provide a structure for future investigations of soil contact that may be useful in other populations.In the malaria vector Anopheles gambiae, two point mutations in the acetylcholinesterase (ace-1R) and the sodium channel (kdrR) genes confer resistance to organophosphate/carbamate and pyrethroid insecticides, respectively. The mechanisms of compensation that recover the functional alterations associated with these mutations and their role in the modulation of insecticide efficacy are unknown. Using multidisciplinary approaches adapted to neurons isolated from resistant Anopheles gambiae AcerKis and KdrKis strains together with larval bioassays, we demonstrate that nAChRs, and the intracellular calcium concentration represent the key components of an adaptation strategy ensuring neuronal functions maintenance. In AcerKis neurons, the increased effect of acetylcholine related to the reduced acetylcholinesterase activity is compensated by expressing higher density of nAChRs permeable to calcium. In KdrKis neurons, changes in the biophysical properties of the L1014F mutant sodium channel, leading to enhance overlap between activation and inactivation relationships, diminish the resting membrane potential and reduce the fraction of calcium channels available involved in acetylcholine release. Together with the lower intracellular basal calcium concentration observed, these factors increase nAChRs sensitivity to maintain the effect of low concentration of acetylcholine. mTOR inhibitor review These results explain the opposite effects of the insecticide clothianidin observed in AcerKis and KdrKis neurons in vitro and in vivo.It has been proposed that adaptation to high temperature involved the synthesis of monolayer-forming ether phospholipids. Recently, a novel membrane architecture was proposed to explain the membrane stability in polyextremophiles unable to synthesize such lipids, in which apolar polyisoprenoids populate the bilayer midplane and modify its physico-chemistry, extending its stability domain. Here, we have studied the effect of the apolar polyisoprenoid squalane on a model membrane analogue using neutron diffraction, SAXS and fluorescence spectroscopy. We show that squalane resides inside the bilayer midplane, extends its stability domain, reduces its permeability to protons but increases that of water, and induces a negative curvature in the membrane, allowing the transition to novel non-lamellar phases. This membrane architecture can be transposed to early membranes and could help explain their emergence and temperature tolerance if life originated near hydrothermal vents. Transposed to the archaeal bilayer, this membrane architecture could explain the tolerance to high temperature in hyperthermophiles which grow at temperatures over 100 °C while having a membrane bilayer. The induction of a negative curvature to the membrane could also facilitate crucial cell functions that require high bending membranes.

Autoři článku: Handbergmccracken2219 (Osborn Forbes)