Phillipshaugaard1981

Z Iurium Wiki

Verze z 27. 10. 2024, 18:29, kterou vytvořil Phillipshaugaard1981 (diskuse | příspěvky) (Založena nová stránka s textem „Further research on how menu choice and a lack of variety in meals affects the quality of life residents is needed in this context, but current evidence su…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Further research on how menu choice and a lack of variety in meals affects the quality of life residents is needed in this context, but current evidence suggests the effect would be detrimental and undermine resident autonomy and nutritional status.

Regulation and monitoring of the Australian Aged Care Accreditation Standards needs to be strengthened to mandate improvement of the choice and variety offered to residents, particularly those on pureed texture modified diets. Further research on how menu choice and a lack of variety in meals affects the quality of life residents is needed in this context, but current evidence suggests the effect would be detrimental and undermine resident autonomy and nutritional status.There are few studies reporting the association between lifestyle and mortality among the oldest old in developing countries. We examined the association between food habits, lifestyle factors and all-cause mortality in the oldest old (≥80 years) using data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS). In 1998/99, 8959 participants aged 80 years and older took part in the baseline survey. https://www.selleckchem.com/ Follow-up surveys were conducted every two to three years until 2011. Food habits were assessed using an in-person interview. Deaths were ascertained from family members during follow-up. Cox and Laplace regression were used to assess the association between food habits, lifestyle factors and mortality risk. There were 6626 deaths during 31,926 person-years of follow-up. Type of staple food (rice or wheat) was not associated with mortality. Daily fruit and vegetable intake was inversely associated with a higher mortality risk (hazard ratios (HRs) 0.85 (95% CI (confidence interval) 0.77-0.92), and 0.74 (0.66-0.83) for daily intake of fruit and vegetables, respectively). There was a positive association between intake of salt-preserved vegetables and mortality risk (consumers had about 10% increase of HR for mortality). Fruit and vegetable consumption were inversely, while intake of salt-preserved vegetables positively, associated with mortality risk among the oldest old. Undertaking physical activity is beneficial for the prevention of premature death.Niacin is a popular nutritional supplement known to reduce the risk of cardiovascular diseases by enhancing high-density lipoprotein levels. Despite such health benefits, niacin impairs fasting blood glucose. In type 2 diabetes (T2DM), an increase in jejunal glucose transport has been well documented; however, this is intriguingly decreased during niacin deficient state. In this regard, the role of the niacin receptor GPR109a in T2DM jejunal glucose transport remains unknown. Therefore, the effects of diabetes and high-glucose conditions on GPR109a expression were studied using jejunal enterocytes of 10-week-old m+/db and db/db mice, as well as Caco-2 cells cultured in 5.6 or 25.2 mM glucose concentrations. Expression of the target genes and proteins were quantified using real-time polymerase chain reaction (RT-PCR) and Western blotting. Glucose uptake in Caco-2 cells and everted mouse jejunum was measured using liquid scintillation counting. 10-week T2DM increased mRNA and protein expression levels of GPR109a in jejunum by 195.0% and 75.9%, respectively, as compared with the respective m+/db control; high-glucose concentrations increased mRNA and protein expression of GPR109a in Caco-2 cells by 130.2% and 69.0%, respectively, which was also confirmed by immunohistochemistry. In conclusion, the enhanced GPR109a expression in jejunal enterocytes of T2DM mice and high-glucose treated Caco-2 cells suggests that GPR109a is involved in elevating intestinal glucose transport observed in diabetes.Nut consumption has been associated with improvements in risk factors for chronic disease in populations within North America, Europe and Iran. This relationship has not been investigated in New Zealand (NZ). The associations between nut consumption and cardiometabolic risk factors among New Zealanders were examined. Data from the 24-h diet recalls of 4721 participants from the NZ Adult Nutrition Survey 2008/2009 (2008/2009 NZANS) were used to determine whole and total nut intake. Anthropometric data and blood pressure were collected, as well as blood samples analysed for total cholesterol (total-C) and HDL cholesterol (HDL-C), glycated haemoglobin (HbA1c), C-reactive protein (CRP) and folate. Participants were classified according to their five-year cardiovascular disease (CVD) risk. Both whole and total nut consumers had significantly lower weight, body mass index (BMI), waist circumference and central adiposity than non-nut consumers (all p ≤ 0.044). Whole blood, serum and red blood cell folate concentrations were significantly higher among whole nut consumers compared to non-whole nut consumers (all p ≤ 0.014), with only serum folate higher in total nut consumers compared to non-total nut consumers (p = 0.023). There were no significant differences for blood pressure, total-C, HDL-C and HbA1c; however, significant negative associations between total nut consumption and CVD risk category (p less then 0.001) and CRP (p = 0.045) were apparent. Nut consumption was associated with more favourable body composition and a number of risk factors, which could collectively reduce chronic disease.Whether or not abdominal symptoms occur in subjects with small intestinal lactose malabsorption might depend on differences in colonic fermentation. To evaluate this hypothesis, we collected fecal samples from subjects with lactose malabsorption with abdominal complaints (LM-IT, n = 11) and without abdominal complaints (LM-T, n = 8) and subjects with normal lactose digestion (NLD, n = 15). Lactose malabsorption was diagnosed using a (13)C-lactose breath test. Colonic fermentation was characterized in fecal samples at baseline and after incubation with lactose for 3 h, 6 h and 24 h through a metabolomics approach using gas chromatography-mass spectrometry (GC-MS). Fecal water cytotoxicity was analyzed using a colorimetric assay. Fecal water cytotoxicity was not different between the three groups (Kruskall-Wallis p = 0.164). Cluster analysis of the metabolite patterns revealed separate clusters for NLD, LM-T and LM-IT samples at baseline and after 24 h incubation with lactose. Levels of 5-methyl-2-furancarboxaldehyde were significantly higher in LM-IT and LM-T compared to NLD whereas those of an unidentified aldehyde were significantly higher in LM-IT compared to LM-T and NLD. Incubation with lactose increased short chain fatty acid (SCFA) concentrations more in LM-IT and LM-T compared to NLD. In conclusion, fermentation patterns were clearly different in NLD, LM-IT and LM-T, but not related to differences in fecal water cytotoxicity.In the present narrative review, we analyzed the relationship between seronegative celiac disease (SNCD) and immunoglobulin deficiencies. For this purpose, we conducted a literature search on the main medical databases. SNCD poses a diagnostic dilemma. Villous blunting, intraepithelial lymphocytes (IELs) count and gluten "challenge" are the most reliable markers. Immunohistochemistry/immunofluorescence tissue transglutaminase (tTG)-targeted mucosal immunoglobulin A (IgA) immune complexes in the intestinal mucosa of SNCD patients may be useful. In our experience, tTG-mRNA was similarly increased in seropositive celiac disease (CD) and suspected SNCD, and strongly correlated with the IELs count. This increase is found even in the IELs' range of 15-25/100 enterocytes, suggesting that there may be a "grey zone" of gluten-related disorders. An immune deregulation (severely lacking B-cell differentiation) underlies the association of SNCD with immunoglobulin deficiencies. Therefore, CD may be linked to autoimmune disorders and immune deficits (common variable immunodeficiency (CVID)/IgA selective deficiency). CVID is a heterogeneous group of antibodies dysfunction, whose association with CD is demonstrated only by the response to a gluten-free diet (GFD). We hypothesized a familial inheritance between CD and CVID. Selective IgA deficiency, commonly associated with CD, accounts for IgA-tTG seronegativity. Selective IgM deficiency (sIgMD) is rare ( less then 300 cases) and associated to CD in 5% of cases. We diagnosed SNCD in a patient affected by sIgMD using the tTG-mRNA assay. One-year GFD induced IgM restoration. This evidence, supporting a link between SNCD and immunoglobulin deficiencies, suggests that we should take a closer look at this association.The lactose hydrogen breath test is a commonly used, non-invasive method for the detection of lactose malabsorption and is based on an abnormal increase in breath hydrogen (H₂) excretion after an oral dose of lactose. We use a combined (13)C/H₂ lactose breath test that measures breath (13)CO₂ as a measure of lactose digestion in addition to H₂ and that has a better sensitivity and specificity than the standard test. The present retrospective study evaluated the results of 1051 (13)C/H₂ lactose breath tests to assess the impact on the diagnostic accuracy of measuring breath CH₄ in addition to H₂ and (13)CO₂. Based on the (13)C/H₂ breath test, 314 patients were diagnosed with lactase deficiency, 138 with lactose malabsorption or small bowel bacterial overgrowth (SIBO), and 599 with normal lactose digestion. Additional measurement of CH₄ further improved the accuracy of the test as 16% subjects with normal lactose digestion and no H₂-excretion were found to excrete CH₄. These subjects should have been classified as subjects with lactose malabsorption or SIBO. In conclusion, measuring CH₄-concentrations has an added value to the (13)C/H₂ breath test to identify methanogenic subjects with lactose malabsorption or SIBO.Listeria monocytogenes is an important foodborne pathogen implicated in many outbreaks of listeriosis. This study aimed at screening for the potential use of Rhodomyrtus tomentosa ethanolic leaf extract as a bio-control agent against L. monocytogenes. Twenty-two L. monocytogenes isolates were checked with 16 commercial antibiotics and isolates displayed resistance to 10 antibiotics. All the tested isolates were sensitive to the extract with inhibition zones ranging from 14 to 16 mm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values ranged from 16 to 32 µg/mL and 128 to 512 µg/mL, respectively. Time-kill assay showed that the extract had remarkable bactericidal effects on L. monocytogenes. The extract at a concentration of 16 µg/mL reduced tolerance to 10% NaCl in L. monocytogenes in 4 h. Stationary phase L. monocytogenes cells were rapidly inactivated by greater than 3-log units within 30 min of contact time with R. tomentosa extract at 128 µg/mL. Electron microscopy revealed fragmentary bacteria with changes in the physical and morphological properties. Our study demonstrates the potential of the extract for further development into a bio-control agent in food to prevent the incidence of L. monocytogenes contamination.Per-Arnt-Sim Kinase (PASK) is an evolutionarily-conserved nutrient-responsive protein kinase that regulates lipid and glucose metabolism, mitochondrial respiration, phosphorylation, and gene expression. Recent data suggests that mammalian PAS kinase is involved in glucose metabolism and acts on pancreatic islet α/β cells and glycogen synthase (GS), affecting insulin secretion and blood glucose levels. In addition, PASK knockout mice (PASK-/-) are protected from obesity, liver triglyceride accumulation, and insulin resistance when fed a high-fat diet, implying that PASK may be a new target for metabolic syndrome (MetS) treatment as well as the cellular nutrients and energy sensors-adenosine monophosphate (AMP)-activated protein kinase (AMPK) and the targets of rapamycin (m-TOR). In this review, we will briefly summarize the regulation of PASK on mammalian glucose and lipid metabolism and its possible mechanism, and further explore the potential targets for MetS therapy.

Autoři článku: Phillipshaugaard1981 (Buch Voigt)