Moranberntsen2381

Z Iurium Wiki

Verze z 27. 10. 2024, 18:19, kterou vytvořil Moranberntsen2381 (diskuse | příspěvky) (Založena nová stránka s textem „Actinobacteria have many properties that make them good candidates for the bioremediation of sites contaminated by several organic and inorganic pollutants…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Actinobacteria have many properties that make them good candidates for the bioremediation of sites contaminated by several organic and inorganic pollutants. However, studies on the biodegradation of used motor oils by Actinobacteria, compared to other bacteria, remain little studied. Actinobacteria were isolated from soil contaminated with used motor oils and sewage sludge in order to select a species that can effectively degrade such pollutants. This study aims to assess their degradation capacity of the various hydrocarbon fractions contained in the oil by gas chromatography-mass spectrometry (GC-MS). Five Actinobacteria isolates were isolated by the enrichment method. The S1.1. A strain was considered the best biosurfactant producing strain. It presents the highest emulsification index compared to other isolated Actinobacteria (82.6%). Phenotypic and molecular identification by sequencing the 16 S rDNA gene makes it possible to assign this isolate to the species Streptomyces ginkgonis KM-1-2. Gravimetric analysis results of biodegraded used motor oil indicated that this strain is capable of degrading 76.4% of an initial 50 ml/l concentration of used motor oil after 4 weeks of incubation. The results of GC-MS analysis of the residual motor oil showed that strain S1.1. A degraded some long and intermediate chain alkanes completely or to shorter fractions. The Streptomyces ginkgonis strain KM-1-2 was also able to degrade certain alkylated mono-aromatic hydrocarbons linked to benzene, as well as certain alkylated and non-alkylated polycyclic aromatic hydrocarbons linked to anthracene, naphthalene, phenanthrene, fluorene, and azulene. This strain exhibited the highest emulsification index at 82.6%. This bacterium shows a significant biodegradation capacity and could, consequently, be used in the processes of bioaugmentation of sites contaminated by these oils.The present study tested whether cardiac vagal activity-which is known to play a vital role in social cognition and engagement-predicted the impact of faces of other ethnicity on selective attention under load. Based on the neurovisceral integration theory, we hypothesized that participants with higher resting heart rate variability (HRV) would exhibit better task performance of a target detection task in trials with face distractors of other ethnicity than participants with lower resting HRV, when cognitive resources were scarce under high load. click here Caucasian participants were instructed to detect a target letter among letter strings superimposed on Black or White male distractor faces under high and low perceptual load. Consistent with the prediction, under high load, HRV was positively correlated with accuracy in trials with Black distractor faces, but not in trials with White distractor faces. The current research demonstrated that individual differences in cardiac vagal tone predicted successful inhibition of an ethnicity-related distractor with limited cognitive resources, which allowed for completing goal-directed behavior more successfully.The muscle disease sarcopenia, which is characterised by a loss of muscle strength, muscle quantity, and physical performance, restricts mobility and independence in an ageing society. The aim of this systematic review and meta-analysis is to analyse the effects that long-term progressive resistance training interventions performed on weight machines have on sarcopenia (European Working Group on Sarcopenia in Older People) and how the interventions are composed. In total, 779 articles published between 2000 and 2020 were scanned (PubMed, Web of Science, CINAHL) and 14 randomised controlled trials were included within the review. Populations, interventions, control groups and outcomes were analysed. Subsequent meta-analysis (10 studies, 902 participants) revealed that the time needed in a chair-stand-test, as an indicator for leg strength, was predominantly reduced, whereas grip strength remained unchanged after the interventions. Data concerning the effects of machine-based progressive resistance training on muscle quantity were insufficient for meta-analysis. Physical performance measured by undergoing the Timed-Up-and-Go-test, gait speed test, Short Physical Performance Battery and 6 min-walk-test improved significantly as well. The quality of evidence (GRADE) in the analysed studies was low or moderate. In summary, machine-based progressive resistance training has the potential to reverse sarcopenia in the oldest old, as reflected by enhanced muscle strength and physical performance. The systematic review revealed promising initial results for muscle quantity.Selenoprotein P (SELENOP) is a major selenium (Se)-containing protein (selenoprotein) in human plasma that is mainly synthesized in the liver. SELENOP transports Se to the cells, while SELENOP synthesized in peripheral tissues is incorporated in a paracrine/autocrine manner to maintain the levels of cellular selenoproteins, called the SELENOP cycle. Pancreatic β cells, responsible for the synthesis and secretion of insulin, are known to express SELENOP. Here, using MIN6 cells as a mouse model for pancreatic β cells and Selenop small interfering (si)RNA, we found that Selenop gene knockdown (KD) resulted in decreased cell viability, cellular pro/insulin levels, insulin secretion, and levels of several cellular selenoproteins, including glutathione peroxidase 4 (Gpx4) and selenoprotein K (Selenok). These dysfunctions induced by Selenop siRNA were recovered by the addition of Se. Ferroptosis-like cell death, regulated by Gpx4, was involved in the decrease of cell viability by Selenop KD, while stress-induced nascent granule degradation (SINGD), regulated by Selenok, was responsible for the decrease in proinsulin. SINGD was also observed in the pancreatic β cells of Selenop knockout mice. These findings indicate a significant role of SELENOP expression for the function of pancreatic β cells by maintaining the levels of cellular selenoproteins such as GPX4 and SELENOK.Myocardial dysfunction is associated with an imbalance in mitochondrial fusion/fission dynamics in patients with diabetes. However, effective strategies to regulate mitochondrial dynamics in the diabetic heart are still lacking. Nicotinamide riboside (NR) supplementation ameliorated mitochondrial dysfunction and oxidative stress in both cardiovascular and aging-related diseases. This study investigated whether NR protects against diabetes-induced cardiac dysfunction by regulating mitochondrial fusion/fission and further explored the underlying mechanisms. Here, we showed an evident decrease in NAD+ (nicotinamide adenine dinucleotide) levels and mitochondrial fragmentation in the hearts of leptin receptor-deficient diabetic (db/db) mouse models. NR supplementation significantly increased NAD+ content in the diabetic hearts and promoted mitochondrial fusion by elevating Mfn2 level. Furthermore, NR-induced mitochondrial fusion suppressed mitochondrial H2O2 and O2•- production and reduced cardiomyocyte apoptosis in both db/db mice hearts and neonatal primary cardiomyocytes. Mechanistically, chromatin immunoprecipitation (ChIP) and luciferase reporter assay analyses revealed that PGC1α and PPARα interdependently regulated Mfn2 transcription by binding to its promoter region. NR treatment elevated NAD+ levels and activated SIRT1, resulting in the deacetylation of PGC1α and promoting the transcription of Mfn2. These findings suggested the promotion of mitochondrial fusion via oral supplementation of NR as a potential strategy for delaying cardiac complications in patients with diabetes.Establishing the first human presence on Mars will be the most technically challenging undertaking yet in the exploration beyond our planet. The remoteness of Mars from Earth, the inhospitable surface conditions including low atmospheric pressure and cold temperatures, and the need for basic resources including water, pose a formidable challenge to this endeavour. The intersection of multiple disciplines will be required to provide solutions for temporary and eventually permanent Martian habitation. This review considers the role cyanobacteria and eukaryotic microalgae (collectively referred to here as 'microalgae') may have in supporting missions to the red planet. The current research using these microorganisms in biological life support systems is discussed, with a systematic analysis of their usage in each system conducted. The potential of microalgae to provide astronauts with oxygen, food, bio-polymers and pharmaceuticals is considered. An overview of microalgal experiments in space missions across the last 60 years is presented, and the research exploring the technical challenges of cultivation on Mars is discussed. From these findings, an argument for culturing microalgae in subterranean bioreactors is proposed. Finally, future synthetic biology approaches for enhancing the cyanobacterial/microalgal role in supporting human deep-space exploration are presented. We show that microalgae hold significant promise for providing solutions to many problems faced by the first Martian settlers, however these can only be realised with significant infrastructure and a reliable power source.Cognitive processes, particularly learning and memory, are crucial brain mechanisms mediating the successful adaptation of individuals to constantly changing environmental conditions. Impairments in memory performance during neurodegenerative disorders or dementias affect life quality of patients as well as their relatives and careers, and thus have a severe socio-economic impact. The last decades have viewed learning and memory as predominantly protein-mediated process at the synapses of brain neurons. However, recent developments propose a principally new, lipid-based mechanism that regulates cognition. Thereby, crucial members of cell membranes, the sphingolipids, emerged to play an outstanding role in learning and memory. The most abundant brain sphingolipids, ceramides and gangliosides, dynamically shape the composition of protein carrying cellular membranes. This, in turn, regulates protein signaling through the membranes and overall neuronal plasticity. An imbalance in sphingolipid composition and disrupted dynamics significantly affect normal functioning of cells and results in the development of multiple psychiatric and neurological disorders with cognitive impairments. Ceramides and gangliosides interact with a plethora of molecular pathways determining de novo learning and memory, as well as pathogenic pathways of neurodegenerative disorders and dementias of various origins. Considering sphingolipids as a trigger mechanism for learning and memory under physiological and pathological conditions, a principally new class of lipid-based preventive and therapeutic approaches to target cognitive impairments and dementias is emerging.Milk thistle (Silybum marianum) provides several possible benefits for horses, namely anti-inflammatory, antioxidant effects, hepatoprotective, and neuroprotective effects. Silybin exerts also pronounced effects on energy metabolism, that could be useful for sport horses. The aim of this study is to evaluate the effect of milk thistle seed cakes (in the form of a granulated mixture with barley) on blood biochemical parameters (total protein, albumin, bilirubin, urea, creatinine, ALT, AST, ALP, GGT, LDH, the total cholesterol, HDL-cholesterol, LDL-cholesterol, TAG, BHB, NEFA, creatine kinase, lactate, glucose, glutathione peroxidase, total antioxidant capacity, cortisol, calcium, and phosphorus) to monitor the differences between the experimental (milk thistle in feed) and control horses after exposure of the monitored horses to heavy physical exercise (combined driving) total number of horses was 12 Czech Warmblood breed horses. The digestibility of silymarin (and its individual flavonolignans) and basic nutrients are also monitored in this study.

Autoři článku: Moranberntsen2381 (Espersen Nichols)