Winsteadmadden6846

Z Iurium Wiki

Verze z 27. 10. 2024, 01:30, kterou vytvořil Winsteadmadden6846 (diskuse | příspěvky) (Založena nová stránka s textem „This work provides new insights into the mechanisms underlying arsenite-induced autophagy dysfunction in cancer promotion and malignancy progression.Cadmiu…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This work provides new insights into the mechanisms underlying arsenite-induced autophagy dysfunction in cancer promotion and malignancy progression.Cadmium (Cd) is a widely distributed toxic metal, which is mainly exposed to humans through diet. The impact of dietary guidelines on the Chinese diet structure has indirectly led to changes in dietary Cd exposure. The Chinese Dietary Guidelines were issued in 1997 and revised in 2007. Based on the time between issuance and revision, this study examined the Cd contamination levels in Shanghai foods from 1988 to 2018 and evaluated cancer risk and disease burden of dietary Cd exposure accordingly. Over the time periods of 1988-1997, 1998-2007, and 2008-2018, it was found that Cd dietary exposure of Shanghai residents showed a trend of increasing and then decreasing (39.7, 44.7, and 36.4 μg/day, respectively). In contrast to cereals, the contribution rates of meat and vegetables to Cd exposure have gradually increased over time, and aquatic foods have become the main source of Cd exposure (40.6%). Although the non-cancer risk hazard quotients of dietary Cd exposure and the excess lifetime cancer risks (ELCR) are relatively low (HQ less then 1, ELCR less then 10-4), 26.6% of Shanghai residents had a potential risk of kidney injury calculated by toxicokinetic model (TK model), and the disability adjusted life years (DALYs) have been rising (from 41.6 to 58.2). Results indicated that in the past three decades, changes of Cd contamination in food due to both limit standards and changes in dietary structure have influenced cancer risk and disease burden from Cd exposure in Shanghai residents. In summary, our study suggested that while regulating the contamination in foods, attention should also be paid to the potential impacts of dietary structure and guidelines on the exposure of pollutants.This study aims to investigate the effect of anaerobic digestion (AD) on P species and how the different species are distributed in the digestate and digestate fractions, i.e. liquid and solid fractions. To do so, six full scale AD plants were used in this work and representative biomass samples were collected for investigation. P fractionation proceeded by adopting fractionation protocols consisting in step-by-step extraction with different solvents, (i.e. NaHCO3, HCl and NaOH-EDTA). Subsequently P species in the different fractions were identified by using 31PNMR. On average, AD did not substantially affect P speciation that depended on the P-fraction content of feeds. A high NaHCO3 fraction content in the ingestate determined, also, a high content of this fraction in the digestate, with consequently lower contents of both P-HCl and P-NaOH-EDTA, i.e. digestate P-fraction contents represented an inheritance of P speciation in the ingestate. A feed effect was observed in single plants. Highest pig/cow slurry content in the feeds seemed to decrease readily soluble P (extracted with NaHCO3) content and increased P associated with both organic matter and amorphous Fe/Al in the digestate. Again, using a large amount of digestate in the feed increased P-soluble content in the digestate. 31P NMR analyses revealed that inorganic P compounds dominated the spectra of all biomasses and fractions, with orthophosphate as the predominant species. When present, organic phosphorus compounds were typically represented by monophosphate esters, DNA and phospholipids, with a predominance of monophosphate esters.The effects of microbial colonization and biofilm formation on microplastics in the marine and coastal environments have aroused global concern recently. However, the simultaneous influences of exposure time and depth on biofilm formation, and subsequently on the properties variations of microplastics is less studied. In this study, polyethylene (PE) film was exposed at three depths (2 m, 6 m, and 12 m) for three time periods (30 days, 75 days, and 135 days) in the coastal seawater of Yellow Sea, China. The results show that the total amount of biofilms markedly increased with exposure time, but decreased with water depth. Typical morphologies and compositions of biofilms such as coccus-, rod-, disc-shaped bacteria and filaments, as well as a dense layer of extracellular polymeric substances were observed on the surfaces of the PE microplastics. Biofilm formation could decrease the hydrophobicity of PE microplastics, and increase the abundances of hydrophilic C-O and CO groups on the surface of PE. Alphaproteobacteria, Gammaproteobacteria and Bacteroidia were identified as the core microbiome of the PE associated biofilms, while the dominant bacteria families vary from the early to the late phases of the biofilm formation. Our results indicate that microplastics associated biofilms could affect the environmental processes and fates of microplastics in the marine and coastal environment.The induced membrane damage is a key mechanism for the cytotoxicity of graphene nanosheets (GNSs). In this research, the physical interaction of GNSs on model membranes was investigated using artificial membranes and plasma membrane vesicles. The effects of the GNSs on plasma membrane, lysosomal and mitochondrial membranes were investigated using rat basophilic leukemia (RBL2H3) cells via lactate dehydrogenase (LDH) assay, acridine orange staining and JC-1 probe, respectively. The physical interaction with model membranes was dominated by electrostatic forces, and the adhered GNSs disrupted the membrane. The degree of physical membrane disruption was quantified by the quartz crystal microbalance with dissipation (QCM-D), confirming the serious membrane disruption. The internalized GNSs were mainly distributed in the lysosomes. They caused plasma membrane leakage, increased the lysosomal membrane permeability (LMP), and depolarized the mitochondrial membrane potential (MMP). The increased cellular levels of reactive oxygen species (ROS) were also detected after GNS exposure. The combination of physical interaction and the excess ROS production damaged the plasma and organelle membranes in living RBL-2H3 cells. The lysosomal and mitochondrial dysfunction, and the oxidative stress further induced cell apoptosis. Specially, the exposure to 25 mg/L GNSs caused severest cell mortality, plasma membrane damage, ROS generation, MMP depolarization and apoptosis. The research findings provide more comprehensive information on the graphene-induced plasma and organelle membrane damage, which is important to understand and predict the cytotoxicity of carbon-based nanomaterials.As a primary degradation by-product of tetracycline (TC), 4-Epianhydrotetracycline (4-EATC) has been detected frequently in the aquatic environment, which may pose a potential environmental risk to aquatic organisms. Up to now, however, the toxicology study on 4-EATC to aquatic organisms is limited. In the present study, in order to better understand the toxic mechanism of 4-EATC, developmental toxicity including lethal and sublethal effects of 4-EATC and TC were investigated. The results showed that the developmental toxicity of 4-EATC to zebrafish embryos was stronger than that of TC. The 96 h LC50 value of 4-EATC to zebrafish embryos was 29.13 mg/L. Malformations seemed to be the most sensitive sublethal endpoint of 4-EATC exposure, and the 96 h EC50 value was 8.57 mg/L. Transcriptome response of 4-EATC to zebrafish embryos was determined. The results showed that 430 different expression genes (DEGs) caused by 4-EATC, and most enriched in tryptophan (TRP) metabolism pathway. Annotation of DEGs in the TRP metabolism demonstrated that expression of 4 gene products in tryptophan metabolized along the kynurenine (KYN) pathway were changed. Disorder of TRP catabolism in KYN pathway was a potential mechanism of 4-EATC toxicity to zebrafish embryos.Nutrients recovery has become a meaningful solution to address shortage in the fertilizer production which is the key issue of nations' food security. The concept of municipal wastewater is based on its ability to be a major potential source for recovered nutrients because of its vast quantity and nutrient-rich base. Microbial fuel cell (MFC) has emerged as a sustainable technology, which is able to recover nutrients and simultaneously generate electricity. In this study a two-chambered MFC was constructed, and operated in a continuous flow mode employing artificial municipal wastewater as a substrate. The effects of hydraulic retention time (HRT) on the recovery of nutrients by MFC were studied. The COD removal rates were insignificantly influenced by varying HRT from 0.35 to 0.69 d, that were over 92%. Furthermore, the recovery rate of nutrients was insignificantly affected while increasing the HRT, which fluctuates from 80% to 90%. In contrast, the maximum power generation declined when HRT increased and the lowest one was 510.3 mV at the HRT of 0.35 d. These results demonstrate that the lab-scale double chamber MFC using municipal wastewater as the substrate can provide a highly effective removal strategy for organic matter, nutrients recovery and electricity output when operating at a specific HRT.In this study, the interaction of emerging pollutant polyvinyl chloride microplastics (PVC MPs) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, UV-visible (UV-vis) absorption spectroscopy, circular dichroism (CD), and Fourier transform infrared (FT-IR) spectroscopy under simulated physiological conditions. Fluorescence results showed that PVC MPs (about 5000 nm in size) can effectively quench the intrinsic fluorescence of HSA through static quenching owing to the formation of HSA-PVC complex. The binding constants (Ka) between PVC and HSA at different temperatures were calculated as 4.97 × 103 M-1, 3.46 × 103 M-1 and 2.51 × 103 M-1, respectively. The number of binding sites was 1.26. The enthalpy change (ΔH), entropy change (ΔS) and free energy change (ΔG) were calculated to be -59.27 kJ·mol-1, 70.76 J·mol-1 K-1 and - 80.35 kJ·mol-1, respectively, indicating that the interaction of PVC with HSA was mainly driven by electrostatic forces. Moreover, results of UV-vis, FT-IR and CD further demonstrated that the microenvironment and secondary structure of HSA were changed a lot induced by PVC, leading to a decrease in α-helix. This work not only provides an insight into the intermolecular interaction between PVC and HSA, but also elucidates the potential biological toxicity of MPs at a molecular level.Circular RNAs (circRNAs) are a newly characterized type of noncoding RNA and play important roles in microRNA (miRNA) function and transcriptional control. To unravel the mechanism of soybean circRNAs in low-temperature (LT) stress response, genome-wide identification of soybean circRNAs was conducted under LT (4 °C) treatment via deep sequencing. In this study, the existence of backsplicing sites was validated and circRNAs exhibited specific expression patterns in response to LT. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that circRNAs could participate in LT-responsive processes. Our study revealed a new circRNA-miRNA-mRNA network, which is involved in LT responses. Furthermore, soybean circRNAs were predicted to have potential to encode polypeptides or protein. SAHA Taken together, our results indicate that soybean circRNAs might encode proteins and be involved in the regulation of LT responses, providing clues regarding the molecular LT-responsive mechanisms in soybean.

Autoři článku: Winsteadmadden6846 (Britt Walter)