Cruzflindt7659

Z Iurium Wiki

Verze z 26. 10. 2024, 21:36, kterou vytvořil Cruzflindt7659 (diskuse | příspěvky) (Založena nová stránka s textem „This study is a multi-pronged description of a temperature-induced outbreak of white-band disease (WBD) that occurred in Acropora cervicornis off northern…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This study is a multi-pronged description of a temperature-induced outbreak of white-band disease (WBD) that occurred in Acropora cervicornis off northern Miami Beach, Florida (USA), from July to October 2014. We describe the ecology of the disease and examine diseased corals using both histopathology and next-generation bacterial 16S gene sequencing, making it possible to better understand the effect this disease has on the coral holobiont, and to address some of the seeming contradictions among previous studies of WBD that employed either a purely histological or molecular approach. The outbreak began in July 2014, as sea surface temperatures reached 29°C, and peaked in mid-September, a month after the sea surface temperature maximum. The microscopic anatomy of apparently healthy portions of colonies displaying active disease signs appeared normal except for some tissue atrophy and dissociation of mesenterial filaments deep within the branch. Structural changes were more pronounced in visibly diseased fragments, with atrophy, necrosis, and lysing of surface and basal body wall and polyp structures at the tissue-loss margin. The only bacteria evident microscopically in both diseased and apparently healthy tissues with Giemsa staining was a Rickettsiales-like organism (RLO) occupying mucocytes. Sequencing also identified bacteria belonging to the order Rickettsiales in all fragments. When compared to apparently healthy fragments, diseased fragments had more diverse bacterial communities made up of many previously suggested potential primary pathogens and secondary (opportunistic) colonizers. Interactions between elevated seawater temperatures, the coral host, and pathogenic members of the diseased microbiome all contribute to the coral displaying signs of WBD.This report describes a spontaneously arising non-infiltrative neoplasm of gastric tunica muscularis in a broodstock sea bass Dicentrarchus labrax from an Italian aquaculture farm. Microscopically, the mass was circumscribed and non-encapsulated and was composed of spindle cells arranged in parallel interlacing bundles or, occasionally, a whirling pattern. Cells had a small quantity of eosinophilic cytoplasm with distinct cell borders. Neoplastic cells were immuno-reactive with smooth muscle actin, vimentin and desmin; S100 was negative. The mucosal epithelium was intact with no neoplastic involvement. A gastric leiomyoma was diagnosed based on the findings. More efforts should be made to study the possible etiology of leiomyoma affecting fish from aquaculture.Nothobranchius fishes (Cyprinodontiformes), known for their genetically encoded extremely compressed lifespan, are considered an excellent vertebrate model for the research of aging. Estradiol Benzoate mouse Unlike the rapid accumulation of data concerning their biology, ecology and genome, knowledge of their age-related diseases, including tumours, is still very limited. This Note reports spontaneous neoplastic lesions in the swim bladder gas glands of Nothobranchius furzeri, N. kadleci and N. orthonotus. Based on light and transmission electron microscopy, the neoplastic proliferation of gas gland cells was classified as adenocarcinoma. There was a concurrent proliferation of haemopoietic cells in the kidney interstitium in all individuals diagnosed with this type of primary neoplasia.Ichthyophthirius multifiliis (Ich) is a globally distributed, freshwater parasitic ciliate that infects wild and cultured fishes. It has a direct, temperature-dependent life cycle that enables rapid multiplication when hosts are plentiful and environmental conditions are favorable. Accurate detection is central to the control of Ich infections and prevention of host mortality, particularly in wild systems where chemical treatments are not feasible. In the Klamath River, California, USA, the parasite threatens pre-spawning adult salmon Oncorhynchus spp. Currently, Ich is monitored by lethal sampling of fish hosts and visual quantification of parasite load. This method is insensitive to light infections, contributes to pre-spawn mortality of wild salmon, and does not allow for population-level disease risk assessments. We developed and applied an alternate sampling method based on molecular analysis of water samples for parasite DNA. We sequenced the small subunit ribosomal DNA (ssrDNA) of Ich isolates collected from the Klamath River, and then developed and validated a novel qPCR assay (SYTO9) that targets Ich ssrDNA. Our assay has better specificity than previously published assays, with strong linearity, efficiency and repeatability. The limit of detection was 50 copies of ssrDNA, equivalent to ~2 theronts in a sample. We found that Ich abundance in environmental water samples collected from the lower Klamath River from July to October, 2014 through 2016, related to observed parasite load on salmon sampled concurrently, indicating that the qPCR assay could be a useful monitoring tool for Ich in the Klamath River, with applications beyond the region.Human-induced changes of the environment, including landscape alteration and habitat loss, may affect wildlife disease dynamics and have important ramifications for wildlife conservation. Amphibians are among the vertebrate taxa most threatened by anthropogenic habitat change. The emerging fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused extinctions and population declines in hundreds of anuran species globally. We studied how the urban landscape is associated with the prevalence of Bd infections by sampling 655 anurans of 3 species (mainly the common toad Bufo bufo) in 42 ponds surrounded by different amounts of urban habitat (defined as towns, cities or villages). We also examined the association between Bd infections and a potential reservoir host species (the moor frog Rana arvalis). We found that 38% of the sites were positive for Bd with an infection prevalence of 4.4%. The extent of urban landscape was negatively correlated with Bd infection prevalence. However, the positive association of Bd with the presence of the possible reservoir species was substantially stronger than the urban effects. The body condition index of B. bufo was negatively associated with Bd infection. This Bd effect was stronger than the negative effect of urban landscape on body condition. Our results suggest that urban environments in Sweden have a negative impact on Bd infections, while the presence of the reservoir species has a positive impact on Bd prevalence. Our study also highlights the potential importance of Bd infection on host fitness, especially in rural landscapes.

Autoři článku: Cruzflindt7659 (Hartley Dodd)