Karaploug9145

Z Iurium Wiki

Verze z 25. 10. 2024, 15:13, kterou vytvořil Karaploug9145 (diskuse | příspěvky) (Založena nová stránka s textem „This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenien…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.Divergence functions play a relevant role in Information Geometry as they allow for the introduction of a Riemannian metric and a dual connection structure on a finite dimensional manifold of probability distributions. They also allow to define, in a canonical way, a symplectic structure on the square of the above manifold of probability distributions, a property that has received less attention in the literature until recent contributions. In this paper, we hint at a possible application we study Lagrangian submanifolds of this symplectic structure and show that they are useful for describing the manifold of solutions of the Maximum Entropy principle.This paper has two purposes. One is to demonstrate contextuality analysis of systems of epistemic random variables. The other is to evaluate the performance of a new, hierarchical version of the measure of (non)contextuality introduced in earlier publications. As objects of analysis we use impossible figures of the kind created by the Penroses and Escher. We make no assumptions as to how an impossible figure is perceived, taking it instead as a fixed physical object allowing one of several deterministic descriptions. Systems of epistemic random variables are obtained by probabilistically mixing these deterministic systems. This probabilistic mixture reflects our uncertainty or lack of knowledge rather than random variability in the frequentist sense.Rényi entropy as a generalization of the Shannon entropy allows for different averaging of probabilities of a control parameter α. This paper gives a new perspective of the Kalman filter from the Rényi entropy. Firstly, the Rényi entropy is employed to measure the uncertainty of the multivariate Gaussian probability density function. Then, we calculate the temporal derivative of the Rényi entropy of the Kalman filter's mean square error matrix, which will be minimized to obtain the Kalman filter's gain. Moreover, the continuous Kalman filter approaches a steady state when the temporal derivative of the Rényi entropy is equal to zero, which means that the Rényi entropy will keep stable. As the temporal derivative of the Rényi entropy is independent of parameter α and is the same as the temporal derivative of the Shannon entropy, the result is the same as for Shannon entropy. Finally, an example of an experiment of falling body tracking by radar using an unscented Kalman filter (UKF) in noisy conditions and a loosely coupled navigation experiment are performed to demonstrate the effectiveness of the conclusion.We consider the problem of minimization of products of mean values of the high powers of operators x and p. From this point of view, we study several two-term superpositions of the Fock states, as well as three popular families of infinite superpositions squeezed states, even/odd coherent states, and orthogonal even coherent states (or compass states). The new element is the analysis of products of the corresponding (co)variances and the related generalized (Robertson-Schrödinger) intelligent states (RSIS). In particular, we show that both Fock and pure Gaussian homogeneous states are RSIS for the fourth powers (but not for the sixth ones). We show that lower bounds of the high-order uncertainty products can be significantly below the vacuum values. In this connection, the concept of significant and weak high-order squeezing is introduced.In this paper, a versatile Markovian queueing system is considered. Given a fixed threshold level c, the server serves customers one a time when the queue length is less than c, and in batches of fixed size c when the queue length is greater than or equal to c. The server is subject to failure when serving either a single or a batch of customers. Service rates, failure rates, and repair rates, depend on whether the server is serving a single customer or a batch of customers. While the analytical method provides the initial probability vector, we use the entropy principle to obtain both the initial probability vector (for comparison) and the tail probability vector. ALK inhibitor drugs The comparison shows the results obtained analytically and approximately are in good agreement, especially when the first two moments are used in the entropy approach.We place the Landau theory of critical phenomena into the larger context of multiscale thermodynamics. The thermodynamic potentials, with which the Landau theory begins, arise as Lyapunov like functions in the investigation of the relations among different levels of description. By seeing the renormalization-group approach to critical phenomena as inseparability of levels in the critical point, we can adopt the renormalization-group viewpoint into the Landau theory and by doing it bring its predictions closer to results of experimental observations.Mesoscopic physics has become a mature field [...].The broadcast channel may experience unequal link coherence times due to a number of factors including variation in node mobility or local scattering conditions. This means the block fading model for different links may have nonidentical block length, and the channel state information for the links may also not be identical. The faster the fading and the shorter the fading block length, the more often the link needs to be trained and estimated at the receiver, and the more likely that channel state information (CSI) is stale or unavailable at the transmitter. This paper investigates a MISO broadcast channel where some receivers experience longer coherence intervals and other receivers experience shorter coherence intervals and must estimate their receive-side CSI (CSIR) frequently. We consider a variety of transmit-side CSI (CSIT) conditions for the abovementioned model, including no CSIT, delayed CSIT, or hybrid CSIT. To investigate the degrees of freedom region, we employ interference alignment and beamforming along with a product superposition that allows simultaneous but noncontaminating transmission of pilots and data to different receivers.

Autoři článku: Karaploug9145 (Molina Rosendal)