Lanemathiasen1183

Z Iurium Wiki

Verze z 25. 10. 2024, 13:32, kterou vytvořil Lanemathiasen1183 (diskuse | příspěvky) (Založena nová stránka s textem „Roles for ribosomal RNA (rRNA) in gene regulation remain largely unexplored. With hundreds of rDNA units positioned across multiple loci, it is not possibl…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Roles for ribosomal RNA (rRNA) in gene regulation remain largely unexplored. With hundreds of rDNA units positioned across multiple loci, it is not possible to genetically modify rRNA in mammalian cells, hindering understanding of ribosome function. It remains elusive whether expansion segments (ESs), tentacle-like rRNA extensions that vary in sequence and size across eukaryotic evolution, may have functional roles in translation control. Here, we develop variable expansion segment-ligand chimeric ribosome immunoprecipitation RNA sequencing (VELCRO-IP RNA-seq), a versatile methodology to generate species-adapted ESs and to map specific mRNA regions across the transcriptome that preferentially associate with ESs. Application of VELCRO-IP RNA-seq to a mammalian ES, ES9S, identified a large array of transcripts that are selectively recruited to ribosomes via an ES. We further characterize a set of 5' UTRs that facilitate cap-independent translation through ES9S-mediated ribosome binding. Thus, we present a technology for studying the enigmatic ESs of the ribosome, revealing their function in gene-specific translation.Membrane contact sites facilitate the exchange of metabolites between organelles to support interorganellar communication. The nucleus-vacuole junctions (NVJs) establish physical contact between the perinuclear endoplasmic reticulum (ER) and the vacuole. Although the NVJ tethers are known, how NVJ abundance and composition are controlled in response to metabolic cues remains elusive. Here, we identify the ER protein Snd3 as central factor for NVJ formation. Snd3 interacts with NVJ tethers, supports their targeting to the contacts, and is essential for NVJ formation. Upon glucose exhaustion, Snd3 relocalizes from the ER to NVJs and promotes contact expansion regulated by central glucose signaling pathways. Glucose replenishment induces the rapid dissociation of Snd3 from the NVJs, preceding the slow disassembly of the junctions. In sum, this study identifies a key factor required for formation and regulation of NVJs and provides a paradigm for metabolic control of membrane contact sites.The ubiquitin-like molecule NEDD8 controls several biological processes and is a promising target for therapeutic intervention. NEDDylation occurs through specific NEDD8 enzymes (canonical) or enzymes of the ubiquitin system (atypical). Identification of NEDD8 sites on substrates is critical for delineating the processes controlled by NEDDylation. By combining the use of the NEDD8 R74K mutant with anti-di-glycine (anti-diGly) antibodies, we identified 1,101 unique NEDDylation sites in 620 proteins. Bioinformatics analysis reveals that canonical and atypical NEDDylation have distinct proteomes; the spliceosome/mRNA surveillance/DNA replication and ribosome/proteasome, respectively. The data also reveal the formation of poly-NEDD8, hybrid NEDD8-ubiquitin, and NEDD8-SUMO-2 chains as potential molecular signals. In particular, NEDD8-SUMO-2 chains are induced upon proteotoxic stress (atypical) through NEDDylation of K11 in SUMO-2, and conjugates accumulate in previously described nucleolus-related inclusions. The study uncovers a diverse proteome for NEDDylation and is consistent with the concept of extensive cross-talk between ubiquitin and Ubls under proteotoxic stress conditions.Central nervous system myelination increases action potential conduction velocity. However, it is unclear how myelination is coordinated to ensure the temporally precise arrival of action potentials and facilitate information processing within cortical and associative circuits. Here, we show that myelin sheaths, supported by mature oligodendrocytes, remain plastic in the adult mouse brain and undergo subtle structural modifications to influence action potential conduction velocity. Repetitive transcranial magnetic stimulation and spatial learning, two stimuli that modify neuronal activity, alter the length of the nodes of Ranvier and the size of the periaxonal space within active brain regions. This change in the axon-glial configuration is independent of oligodendrogenesis and robustly alters action potential conduction velocity. Because aptitude in the spatial learning task was found to correlate with action potential conduction velocity in the fimbria-fornix pathway, modifying the axon-glial configuration may be a mechanism that facilitates learning in the adult mouse brain.Myotonic dystrophy (DM) is caused by expanded CTG/CCTG repeats, causing symptoms in skeletal muscle, heart, and central nervous system (CNS). CNS issues are debilitating and include hypersomnolence, executive dysfunction, white matter atrophy, and neurofibrillary tangles. Here, we generate RNA-seq transcriptomes from DM and unaffected frontal cortex and identify 130 high-confidence splicing changes, most occurring only in cortex, not skeletal muscle or heart. Mis-spliced exons occur in neurotransmitter receptors, ion channels, and synaptic scaffolds, and GRIP1 mis-splicing modulates kinesin association. Optical mapping of expanded CTG repeats reveals extreme mosaicism, with some alleles showing >1,000 CTGs. Mis-splicing severity correlates with CTG repeat length across individuals. Upregulated genes tend to be microglial and endothelial, suggesting neuroinflammation, and downregulated genes tend to be neuronal. NMS1286937 Many gene expression changes strongly correlate with mis-splicing, suggesting candidate biomarkers of disease. These findings provide a framework for mechanistic and therapeutic studies of the DM CNS.Bacterial outer membrane vesicles (OMVs) perform a variety of functions in bacterial survival and virulence. In mammalian systems, OMVs activate immune responses and are exploited as vaccines. However, little work has focused on the interactions of OMVs with plant hosts. Here, we report that OMVs from Pseudomonas syringae and P. fluorescens activate plant immune responses that protect against bacterial and oomycete pathogens. OMV-mediated immunomodulatory activity from these species displayed different sensitivity to biochemical stressors, reflecting differences in OMV content. Importantly, OMV-mediated plant responses are distinct from those triggered by conserved bacterial epitopes or effector molecules alone. Our study shows that OMV-induced protective immune responses are independent of the T3SS and protein, but that OMV-mediated seedling growth inhibition largely depends on proteinaceous components. OMVs provide a unique opportunity to understand the interplay between virulence and host response strategies and add a new dimension to consider in host-microbe interactions.

Autoři článku: Lanemathiasen1183 (Franck Johnson)