Salinasbarton5744

Z Iurium Wiki

Verze z 25. 10. 2024, 12:29, kterou vytvořil Salinasbarton5744 (diskuse | příspěvky) (Založena nová stránka s textem „e., palaeoentomology, vibrational spectroscopy, neutron tomography, etc.).Qualitative and quantitative Raman and infrared measurements on sodium nitrate (N…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

e., palaeoentomology, vibrational spectroscopy, neutron tomography, etc.).Qualitative and quantitative Raman and infrared measurements on sodium nitrate (NaNO3) solutions have been carried out over a wide concentration range (5.56 × 10-6-7.946 mol/L) in water and heavy water. The Raman spectra were measured from 4000 cm-1 to low wavenumbers at 45 cm-1. Band fit analysis on the profile of the 1047 cm-1 band, ν1(a 1 ' ) NO 3 - measured at high resolution at 0.90 cm-1 produced a small contribution at 1027 cm-1 of the isotopomer N16O218O(aq). The effect of solute concentration on the Raman and infrared bands has been systematically recorded. Extrapolation of the experimental data resulted in values for all the nitrate bands of the "free", i.e., fully hydrated NO 3 - (aq). However, even in dilute solutions, the vibrational symmetry of the hydrated NO 3 - (aq) is broken and the antisymmetric N-O stretch, which is degenerate for the isolated anion, is split by 56 cm-1. At concentrations >2.5 mol/L, direct contact between Na+ and NO 3 - was observed and accompanied by large band parameter ed NO 3 - .Raman spectroscopy has been used extensively to calculate CO2 fluid density in many geological environments, based on the measurement of the Fermi diad split (Δ; cm-1) in the CO2 spectrum. While recent research has allowed the calibration of several Raman CO2 densimeters, there is a limit to the interlaboratory application of published equations. These calculate two classes of density values for the same measured Δ, with a deviation of 0.09 ± 0.02 g/cm3 on average. To elucidate the influence of experimental parameters on the calibration of Raman CO2 densimeters, we propose a bottom-up approach beginning with the calibration of a new equation, to evaluate a possible instrument-dependent variability induced by experimental conditions. Then, we develop bootstrapped confidence intervals for density estimate of existing equations to move the statistical analysis from a sample-specific to a population level. We find that Raman densimeter equations calibrated based on spectra acquired with similar spectral resolution calculate CO2 density values lying within standard errors of equations and are suitable for the interlaboratory application. The statistical analysis confirms that equations calibrated at similar spectral resolution calculate CO2 densities equivalent at 95% confidence, and each Raman densimeter does have a limit of applicability, statistically defined by a minimum Δ value, below which the error in calculated CO2 densities is too high.Spectroscopy rapidly captures a large amount of data that is not directly interpretable. Principal component analysis is widely used to simplify complex spectral datasets into comprehensible information by identifying recurring patterns in the data with minimal loss of information. The linear algebra underpinning principal component analysis is not well understood by many applied analytical scientists and spectroscopists who use principal component analysis. The meaning of features identified through principal component analysis is often unclear. This manuscript traces the journey of the spectra themselves through the operations behind principal component analysis, with each step illustrated by simulated spectra. Principal component analysis relies solely on the information within the spectra, consequently the mathematical model is dependent on the nature of the data itself. The direct links between model and spectra allow concrete spectroscopic explanation of principal component analysis , such as the scores representing "concentration" or "weights". The principal components (loadings) are by definition hidden, repeated and uncorrelated spectral shapes that linearly combine to generate the observed spectra. They can be visualized as subtraction spectra between extreme differences within the dataset. Each PC is shown to be a successive refinement of the estimated spectra, improving the fit between PC reconstructed data and the original data. Understanding the data-led development of a principal component analysis model shows how to interpret application specific chemical meaning of the principal component analysis loadings and how to analyze scores. A critical benefit of principal component analysis is its simplicity and the succinctness of its description of a dataset, making it powerful and flexible.Implementing remote, real-time spectroscopic monitoring of radiochemical processing streams in hot cell environments requires efficiency and simplicity. The success of optical spectroscopy for the quantification of species in chemical systems highly depends on representative training sets and suitable validation sets. Selecting a training set (i.e., calibration standards) to build multivariate regression models is both time- and resource-consuming using standard one-factor-at-a-time approaches. This study describes the use of experimental design to generate spectral training sets and a validation set for the quantification of sodium nitrate (0-1 M) and nitric acid (0.1-10 M) using the near-infrared water band centered at 1440 nm. Partial least squares regression models were built from training sets generated by both D- and I-optimal experimental designs and a one-factor-at-a-time approach. Emricasan The prediction performance of each model was evaluated by comparing the bias and standard error of prediction for statistical significance. D- and I-optimal designs reduced the number of samples required to build regression models compared with one-factor-at-a-time while also improving performance. Models must be confirmed against a validation sample set when minimizing the number of samples in the training set. The D-optimal design performed the best when considering both performance and efficiency by improving predictive capability and reducing number of samples in the training set by 64% compared with the one-factor-at-a-time approach. The experimental design approach objectively selects calibration and validation spectral data sets based on statistical criterion to optimize performance and minimize resources.

Autoři článku: Salinasbarton5744 (Ross Brooks)