Beyerpritchard1213

Z Iurium Wiki

Verze z 24. 10. 2024, 22:33, kterou vytvořil Beyerpritchard1213 (diskuse | příspěvky) (Založena nová stránka s textem „The visual system consists of various types of neurons and a single-nucleotide mutation can sometimes lead to blindness. The phototransduction pathway in t…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The visual system consists of various types of neurons and a single-nucleotide mutation can sometimes lead to blindness. The phototransduction pathway in the retina starts from the first-order neurons, the photoreceptor cells, and transmits the signals to second-order neurons. Finally, the output signal from third-order neurons, the ganglion cells, is carried to the brain. The photoreceptor cells are the only neurons in the retina that can respond to a light signal; they are hyperpolarised when they receive light, and the ganglion cells carry the signals to the brain following the depolarization. Recently, various types of channelrhodopsins have been found and developed. It is expected that the gene therapies using the cation channel as well as anion channelrhodopsin genes would be effective against diseases that cause severe destruction of visual function, such as the retinitis pigmentosa and age-related macular degeneration. In this review, we mainly describe mVChR1-mediated gene therapy for retinitis pigmentosa and the future application of optogenetic genes in retinal diseases.Individuals with neurodevelopmental disorders, such as autism spectrum disorders (ASDs), are diagnosed based on nonquantitative objective parameters such as behavioral phenotypes. It is still unclear how any neural mechanism affects such behavioral phenotypes in these patients. In human genetics, a large number of genetic abnormalities including single nucleotide variation (SNV) and copy number variation (CNV) have been found in individuals with ASDs. It is thought that influence of such variations converges on dysfunction of neural circuit resulting in common behavioral phenotypes of ASDs such as deficits in social communication and interaction. Recent studies suggest that an excitatory/inhibitory (E/I) imbalanced state, which induces disruption of neural circuit activities, is one of the pathophysiological abnormalities in ASD brains. To assess the causal relationship between brain abnormalities and behavioral deficits, we can take advantage of optogenetics with animal models of ASDs that recapitulate human genetic mutations. Here, we review optogenetics studies being utilized to dissect neural circuit mechanisms associated with social deficits in model mice of ASD. Optogenetic manipulation of disrupted neural activities would help us understand how neural circuits affect behavioral deficits observed in ASDs.The optogenetics approach uses a combination of genetic and optical methods to initiate and control functions in specific cells of biological tissues. Since the high-speed control of neuronal activity by irradiating channelrhodopsin-2 with blue light was reported in 2005, tremendous advancement and application of optogenetics in the field of neuroscience, such as in studies that associate neuronal activity with behaviors, have been initiated. Optogenetics is not only used as a research tool, but is also started to apply in the diagnosis of a disease or as therapy in various studies. Here, I summarize current reports on therapy using a typical photopigment used in optogenetics, channelrhodopsin-2.To elucidate neural mechanisms underlying oscillatory phenomena in brain function, we have developed optogenetic tools and statistical methods. Specifically, opto-current-clamp induced oscillation reveals intrinsic frequency preferences in the neural circuits by oscillatory resonance. Furthermore, resonance or entrainment to intrinsic frequency is state-dependent. When resonance phenomena go beyond a certain range, it could even induce epileptic seizure in highly reproducible manner. We are able to study how seizures start, develop, and stop in neural circuits. Therefore, the optogenetics-induced oscillatory activation is a powerful tool in neuroscience research.In the application of advanced neuroscience techniques including optogenetics to small awake animals, it is often necessary to restrict the animal's movements. A spherical treadmill is a beneficial option that enables virtual locomotion of body- or head-restrained small animals. Besides, it has a wide application range, including virtual reality experiments. This chapter describes the fundamentals of a spherical treadmill for researchers who want to start experiments with it. First, we describe the physical aspect of a spherical treadmill based on the simple mechanical analysis. Next, we explain the basics of data logging and preprocessing for behavioral analysis. We also provide simple computer programs that work for the purpose.We have developed a Si opt-electro multifunctional neural probe with multiple waveguides and embedded optical fiber for highly accurate optical stimulation. The Si opt-electro multifunctional neural probe had 16 recording sites, three optical waveguides, and metal cover for suppressing light leakage. The other opt-electro multifunctional neural probe had an optical fiber in the trench of the probe shank, which leads to fewer damages to tissues. We evaluated the electrochemical properties of the recording sites and confirmed that the neural probe had suitable characteristics for neural recording. We also demonstrated the optical stimulation to the neurons expressing ChR2 using our probe. As a result, we succeeded in multisite optical stimulation and observed that no light leakage from the optical waveguides because of the metal cover. From in vivo experiments, we successfully recorded optically modulated local field potential using the fabricated Si neural probe with optical waveguides. Moreover, we applied current source density analysis to the recorded LFPs. As a result, we confirmed that the light-induced membrane current sinks in the locally stimulated area. The Si opto-electro multifunctional neural probe is one of the most versatile tools for optogenetics.To elucidate the expression mechanisms of brain functions, we have developed an ultrathin fluorescence endoscope imaging system (U-FEIS) that can image cells in the brain at any depth while minimizing the invasion. The endoscope part of U-FEIS consists of a GRIN lens and a 10,000-pixel image fiber with a diameter of 450 μm. The specialized microscope of U-FEIS is within 30 cm square and includes lenses and optical filters optimized for the endoscope. Using U-FEIS, we successfully visualized neurons expressing GFP with single-cell resolution and recorded the multineuronal activities in vitro and in vivo. U-FEIS can also perform imaging and optical stimulation simultaneously. https://www.selleckchem.com/products/loxo-195.html Therefore, U-FEIS should be a powerful optical tool in neuroscience research.

Autoři článku: Beyerpritchard1213 (Best Bjerrum)