Hoffmarsh6786

Z Iurium Wiki

Verze z 24. 10. 2024, 22:30, kterou vytvořil Hoffmarsh6786 (diskuse | příspěvky) (Založena nová stránka s textem „Activated macrophages contribute prominently to the progression and maintenance of almost all inflammatory and autoimmune diseases. Although non-specific e…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Activated macrophages contribute prominently to the progression and maintenance of almost all inflammatory and autoimmune diseases. Although non-specific elimination of these phagocytes has been shown to treat animal models of inflammatory disease, the same therapies have been compromised by unacceptable toxicities, because they also kill quiescent macrophages in healthy tissues. In the studies below, we exploit upregulation of folate receptor beta (FRβ) on inflammatory (but not resting) macrophages to target a cytotoxic drug selectively to the inflammatory subset of macrophages. Because many of these activated macrophages are nondividing, we also employ verrucarin A as the cytotoxic payload, since it kills both mitotic and nonmitotic cells by blocking protein synthesis. By inserting a redox-sensitive self-immolative linker between the folate and verrucarin A, we further assure that release of unmodified verrucarin A is triggered primarily after internalization by an FRβ-positive cell. The resulting folate-verrucarin A conjugate is shown to kill FR-expressing cells in vitro in a manner that can be inhibited by competition with 100-fold excess folic acid. The folate-verrucarin A conjugate is also shown to successfully treat a murine model of inflammatory peritonitis by eliminating inflammatory macrophages without killing other cells in the same peritonitis fluid. Based on this high specificity for inflammatory macrophages, we conclude that folate-verrucarin A warrants continued exploration as a potential therapy for inflammatory and autoimmune diseases in humans.Although the administration of combined therapy is efficient to tuberculosis (TB) treatment caused by susceptible Mycobacterium tuberculosis strains, to overcome the multidrug resistance is still a challenge. Some studies have reported evidence about tetrahydropyridines as a putative efflux pump inhibitor, including in mycobacteria, being a promising strategy against M. https://www.selleckchem.com/peptide/gp91ds-tat.html tuberculosis. Thus, we investigated the biological potential of 2,2,2-trifluoro-1-(1,4,5,6-tetrahydropyridin-3-yl)ethanone derivative (NUNL02) against two strains of M. tuberculosis. NUNL02 was able to increase the susceptibility of the multidrug resistant strain to the anti-TB drugs, resulting in synergism with rifampicin. Still, we assume that this compound plays a role in the efflux mechanism in M. tuberculosis, besides, to be able to kill the bacillus under the deprivation of essential nutrients. Thus, our findings highlight NUNL02 as a promising prototype to develop a new adjuvant for TB treatment, mainly as EPI.Saponin is an active component of many phytomedicine, which has extensive pharmacology effects. Meanwhile, it is reported that cytotoxicity, especially hemolysis and hepatotoxicity, in pentacyclic triterpenoid saponin (PTS) hindered their further development and application. Surface activity, a unique physical property of saponins, is believed to be related to membrane toxicity. However, the correlation between the surface activity and cytotoxicity of saponins is still unexplained. In this paper, our aim was to explore the relationship between surface activity-cytotoxicity of pulchinenosides and the hepatotoxicity mechanism of PTS in vitro. The surface activity of different saponins was investigated by contact angle, surface free energy (SFE), and oil/water partition coefficient (log Papp). In the cytotoxicity study, the hemolysis and hepatotoxicity activity of different saponins was compared by HD50 of erythrocyte and MTT, flow cytometry and LDH assay in LO2 cells respectively. And in the hepatotoxicity mechanism study, western blot was used for observing the expression of proteins related to apoptosis and exploring the liver injury mechanism of PTS. The results suggested that the influences of surface activity on hepatocytes and erythrocytes were different, indicating that the correlation of surface activity-cytotoxicity could provide more information for development of PTS. And the result of hepatotoxicity mechanism study of saponins suggested that endogenous and exogenous apoptotic pathways could be the potential targets of PTS, which could not only provide basis for clinical monitoring and treatment of the toxicity in saponins, but also provide more reference for the clinical application of PTS and phytomedicine containing PTS.Several boron-containing small molecules have been approved by the US FDA to treat human diseases. We explored potential applications of boron-containing compounds in modern agriculture by pursuing multiple research and development programs. Here, we report a novel series of multi-substitution benzoxaboroles (1-36), a compound class that we recently reported as targeting geranylgeranyl transferase I (GGTase I) and thereby inhibiting protein prenylation (Kim et al., 2020). These compounds were designed, synthesized, and tested against the agriculturally important fungal pathogens Mycosphaerella fijiensis and Colletotrichum sublineolum in a structure-activity relationship (SAR) study. Compounds 13, 28, 30, 34 and 36 were identified as active leads with excellent antifungal MIC95 values in the range of 1.56-3.13 ppm against M. fijiensis and 0.78-3.13 ppm against C. sublineolum.To continue the quest of newer anticancer agents, herein a novel class of 1,4-Dihydroindenopyrazole linked oxadiazole conjugates 9(a-r) was designed, synthesized and experimented for their anti-proliferative activities against four different cancer cell lines (human) such as MDA MB-231 (breast), PANC-1 (pancreatic), MCF-7 (breast), and Caco-2 (Colorectal) by using MTT assay. Among the series compound 9h and 9 m demonstrated significant potency against the PANC-1 (human pancreatic cancer cells) with IC50 value 7.4 μM and 4.3 μM respectively. While compound 9 m was found to be equipotent to standard Gomitabine (IC50 = 4.2 μM). The detailed biological assays revealed S phase cell cycle arrest and their ability to propagate apoptosis by activating caspase 3 and 9 enzymes which was confirmed by Annexin-FITC assay and caspase assay. Moreover, docking study suggested their binding modes and interactions with caspase-3. In addition, in silico studies revealed that they exhibit good pharmacokinetics and drug likeliness properties.

Autoři článku: Hoffmarsh6786 (Pettersson Hatfield)