Kronborgthorpe0463

Z Iurium Wiki

Verze z 24. 10. 2024, 20:17, kterou vytvořil Kronborgthorpe0463 (diskuse | příspěvky) (Založena nová stránka s textem „Herein we report a chromium-catalyzed allylic defluorinative ketyl olefin coupling between aldehydes and α-trifluoromethyl alkenes, which provides novel a…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Herein we report a chromium-catalyzed allylic defluorinative ketyl olefin coupling between aldehydes and α-trifluoromethyl alkenes, which provides novel and efficient access to diverse gem-difluorohomoallylic alcohols. Remarkably, the high chemoselectivity of this reaction enables the conversion of the formyl moiety in the presence of various easily reducible functionalities including ketone, organohalides, aziridine, sulfone, alkyne, and unactivated alkene. The utility of this method is demonstrated by various simple derivatizations of the attached hydroxyl group of the coupling products. The preliminary mechanistic investigations suggest a reaction pathway with a rate-limiting C-C forming step followed by facile β-fluoro elimination.Following the work on spin-component and spin-opposite scaled (SCS/SOS) global double hybrids for singlet-singlet excitations by Schwabe and Goerigk [ J. Chem. Theory Comput. 2017, 13, 4307-4323] and our own works on new long-range corrected (LC) double hybrids for singlet-singlet and singlet-triplet excitations [ J. Chem. Theory Comput. 2019, 15, 4735-4744 and J. Chem. Phys. 2020, 153, 064106], we present new LC double hybrids with SCS/SOS that demonstrate further improvement over previously published results and methods. We introduce new unscaled and scaled versions of different global and LC double hybrids based on Becke88 or PBE exchange combined with LYP, PBE, or P86 correlation. For singlet-singlet excitations, we cross-validate them on six benchmark sets that cover small to medium-sized chromophores with different excitation types (local-valence, Rydberg, and charge transfer). For singlet-triplet excitations, we perform the cross-validation on three different benchmark sets following the same analysis as in our previous work in 2020. Entinostat nmr In total, 203 excitations are analyzed. Our results confirm and extend those of Schwabe and Goerigk regarding the superior performance of SCS and SOS variants compared to their unscaled parents by decreasing mean absolute deviations, root-mean-square deviations, or error spans by more than half and bringing absolute mean deviations closer to zero. Our SCS/SOS variants are shown to be highly efficient and robust for the computation of vertical excitation energies, which even outperform specialized double hybrids that also contain an LC in their perturbative part. In particular, our new SCS/SOS-ωPBEPP86 and SCS/SOS-ωB88PP86 functionals are four of the most accurate and robust methods tested in this work, and we fully recommend them for future applications. However, if the relevant SCS and SOS algorithms are not available to the user, we suggest ωPBEPP86 as the best unscaled method in this work.An efficient visible-light-induced decarboxylative coupling reaction of N-protecting α-amino acids with heterocycles for the generation of aminoalkylated heterocycles is presented. A series of aminoalkylated heterocycles were obtained in moderate to good yields. Attractive features of this process include the generation of aminomethyl radical by an inexpensive organic photocatalyst under transition-metal-free conditions.While multiscale modeling significantly enhances the capability of molecular simulations of polymer systems, it is well realized that the systematically derived coarse-grained (CG) models generally underestimate the thermomechanical properties. In this work, a charge-based mapping scheme has been adopted to include explicit electrostatic interactions and benchmarked against two typical polymers, atactic poly(methyl methacrylate) (PMMA) and polystyrene (PS). The CG potentials are parameterized against the oligomer bulks of nine monomers per chain to match the essential structural features and the two basic pressure-volume-temperature (PVT) properties, which are obtained from the all-atomistic (AA) molecular dynamics (MD) simulations at a single elevated temperature. The so-parameterized CG potentials are extended with the MD method to simulate the two polymer bulks of one hundred monomers per chain over a wide temperature range. Without any scaling, all the simulated results, including mass densities and bulk moduli at room temperature, thermal expansion coefficients at rubbery and glassy states, and glass transition temperatures (Tg), compare well with the corresponding experimental data. The proposed scheme not only contributes to realistically simulating various thermomechanical properties of both apolar and polar polymers but also allows for directly simulating their electrical properties.Short-chain fatty acids (SCFAs), including propionate, are major metabolites of intestinal microorganisms and play an essential role in regulating intestinal epithelial integrity. Heat shock proteins (HSPs) promote cellular homeostasis under physiological and stressed conditions. This study aimed to investigate the regulation of intestinal HSP70 by propionate in human intestinal Caco-2 cells and the colon of fermentable dietary fiber (DF)-fed mice and germ-free mice. The results showed that propionate increased Hspa1a (HSP70 mRNA) level in Caco-2 cells, upregulated HSP70 protein, and phosphorylation of heat shock factor 1; however, the latter two were reduced by mitogen-activated protein kinases and the mechanistic target of rapamycin inhibitors. Feeding fermentable DFs, such as guar gum (GG) and partially hydrolyzed GG, increased both cecal SCFAs and colonic HSP70 expression, both of which were reduced in germ-free mice than in specific-pathogen-free mice. Collectively, the propionate-induced HSP70 expression was shown to be possibly involved in intestinal homeostasis.Understanding the complex structure of polymer blends filled with nanoparticles (NPs) is key to design their macroscopic properties. Here, the spatial distribution of hydrogenated (H) and deuterated (D) polymer chains asymmetric in mass is studied by small-angle neutron scattering. Depending on the chain mass, a qualitatively new large-scale organization of poly(vinyl acetate) chains beyond the random-phase approximation is evidenced in nanocomposites with attractive polymer-silica interactions. The silica is found to systematically induce bulk segregation. Only with long H-chains, a strong scattering signature is observed in the q range of the NP size it is the sign of interfacial isotopic enrichment, that is, of contrasted polymer shells close to the NP surface. A quantitative model describing both the bulk segregation and the interfacial gradient (over ca. 10-20 nm depending on the NP size) is developed, showing that both are of comparable strength. In all cases, NP surfaces trap the polymer blend in a non-equilibrium state, with preferential adsorption around NPs only if the chain length and isotopic preference toward the surface combine their entropic and enthalpic driving forces.

Autoři článku: Kronborgthorpe0463 (McCartney McMillan)