Willardavery7622

Z Iurium Wiki

Verze z 24. 10. 2024, 14:28, kterou vytvořil Willardavery7622 (diskuse | příspěvky) (Založena nová stránka s textem „In addition, both the direction and magnitude of the vapor temperature gradient, as well as the temperature jump at the liquid-vapor interface, are functio…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In addition, both the direction and magnitude of the vapor temperature gradient, as well as the temperature jump at the liquid-vapor interface, are functions of the applied heat flux. The interfacial entropy generation rate calculated from the vibrational density of state of the interfacial liquid and vapor molecules shows a positive production during evaporation, and the results qualitatively agree with the predictions from non-equilibrium thermodynamics.We present a new approach to incorporate the geometric phase in the time-dependent wave packet calculations based on the analytic diabatic potential energy matrices for two-state systems connecting via a conical intersection. The approach only requires information on the location of the conical intersection and the adiabatic potential energy surface of the ground electronic state and merely takes the same computational cost as a diabatic calculation. Demonstrations of the benchmark H + H2/HD reactions show that the new approach can accurately include the geometric phase in dynamics calculation and can be easily extended to the cold regime where the GP effects become more pronounced. Due to its simplicity and numerical efficiency, the new approach has the potential to extend the dynamics study of the geometric effects to a wide range of reaction systems.First-principles calculations offer the chance to obtain a microscopic understanding of light-harvesting processes. Time-dependent density functional theory can have the computational efficiency to allow for such calculations. However, the (semi-)local exchange-correlation approximations that are computationally most efficient fail to describe charge-transfer excitations reliably. We here investigate whether the inexpensive average density self-interaction correction (ADSIC) remedies the problem. For the systems that we study, ADSIC is even more prone to the charge-transfer problem than the local density approximation. We further explore the recently reported finding that the electrostatic potential associated with the chromophores' protein environment in the light-harvesting complex 2 beneficially shifts spurious excitations. We find a great sensitivity on the chromophores' atomistic structure in this problem. SN 52 order Geometries obtained from classical molecular dynamics are more strongly affected by the spurious charge-transfer problem than the ones obtained from crystallography or density functional theory. For crystal structure geometries and density-functional theory optimized ones, our calculations confirm that the electrostatic potential shifts the spurious excitations out of the energetic range that is most relevant for electronic coupling.A full-dimensional rigorous quantum mechanical treatment of non-reactive inelastic scattering of an open-shell diatom [e.g., NO(2Π)] with a structureless and spinless atom is presented within the time-independent close-coupling framework. The inclusion of the diatomic vibrational degree of freedom allows the investigation of transitions between different vibrational manifolds, in addition to those between different rotational, spin-orbit, and Λ-doublet states. This method is applied to the scattering of vibrationally excited NO(2Π) with Ar and H (with its spin ignored). The former has negligible vibrational inelasticity, thanks to the weak interaction between the two collisional partners. This conclusion justifies the commonly used two-dimensional approximation in treating NO scattering with rare gas atoms. The latter, on the other hand, is shown to undergo significant vibrational relaxation, even in the ultra-cold regime, owing to a chemically bonded (HNO) complex on the lowest-lying singlet potential energy surfaces.We present a systematically improvable approach to core excitations in variational Monte Carlo. Building on recent work in excited-state-specific Monte Carlo, we show how a straightforward protocol, starting from a quantum chemistry guess, is able to capture core state's strong orbital relaxations, maintain accuracy in the near-nuclear region during these relaxations, and explicitly balance accuracy between ground and core excited states. In water, ammonia, and methane, which serve as prototypical representatives for oxygen, nitrogen, and carbon core states, respectively, this approach predicts core excitation energies within 0.3 eV of experiment and core excitation peak separations within 0.1 eV of experiment.We investigate the behavior of two-dimensional systems that exhibit a transition between homogeneous and spatially inhomogeneous phases, which have spherical topology, and whose mechanical properties depend on the local value of the order parameter. One example of such a system is multicomponent lipid bilayer vesicles, which serve as a model to study cellular membranes. Under certain conditions, such bilayers separate into coexisting liquid-ordered and liquid-disordered regions. When arranged into the shape of small vesicles, this phase coexistence can result in spatial patterns that are more complex than the basic two-domain configuration encountered in typical bulk systems. The difference in bending rigidity between the liquid-ordered and liquid-disordered regions couples the shape of the vesicle to the local composition. We show that this interplay gives rise to a rich phase diagram that includes homogeneous, separated, and axisymmetric modulated phases that are divided by regions of spiral patterns in the surface morphology.Electron paramagnetic resonance (EPR) is used to establish the role of iodine as an electron trap in tin hypothiodiphosphate (Sn2P2S6) crystals. Iodine ions are unintentionally incorporated when the crystals are grown by the chemical-vapor-transport method with SnI4 as the transport agent. The Sn2P2S6 crystals consist of Sn2+ ions and (P2S6)4- anionic groups. During growth, an iodine ion replaces a phosphorus in a few of the anionic groups, thus forming (IPS6)4- molecular ions. Following an exposure at low temperature to 633 nm laser light, these (IPS6)4- ions trap an electron and convert to EPR-active (IPS6)5- groups with S = 1/2. A concentration near 1.1 × 1017 cm-3 is produced. The EPR spectrum from the (IPS6)5- ions has well-resolved structure resulting from large hyperfine interactions with the 127I and 31P nuclei. Analysis of the angular dependence of the spectrum gives principal values of 1.9795, 2.0123, and 2.0581 for the g matrix, 232 MHz, 263 MHz, and 663 MHz for the 127I hyperfine matrix, and 1507 MHz, 1803 MHz, and 1997 MHz for the 31P hyperfine matrix.

Autoři článku: Willardavery7622 (House Hedrick)