Gloverbriggs6553

Z Iurium Wiki

Verze z 24. 10. 2024, 12:16, kterou vytvořil Gloverbriggs6553 (diskuse | příspěvky) (Založena nová stránka s textem „These results present a novel mechanism showing that CTR-GNPs can attenuate the migration and invasion of glioblastoma cells induced by PMA through transcr…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

These results present a novel mechanism showing that CTR-GNPs can attenuate the migration and invasion of glioblastoma cells induced by PMA through transcriptional and translational regulation of MMP-2/-9 and PLD1. Taken together, our results suggest that CTR-GNPs might be an excellent therapeutic alternative for wide range of glioblastomas.This study proposes a new design of lightweight and cost-efficient composite materials for the aeronautic industry utilizing recycled fresh scrap rubber, epoxy resin, and graphene nanoplatelets (GnPs). After manufacturing the composites, their bending strength and fracture characteristics were investigated by three-point bending (3PB) tests. Halpin-Tsai homogenization adapted to composites containing GnPs was used to estimate the moduli of the composites, and satisfactory agreement with the 3PB test results was observed. In addition, 3PB tests were simulated by finite element method incorporating the Halpin-Tsai homogenization, and the resulting stress-strain curves were compared with the experimental results. Mechanical test results showed that the reinforcement with GnPs generally increased the modulus of elasticity as well as the fracture toughness of these novel composites. Toughening mechanisms were evaluated by SEM fractography. The typical toughening mechanisms observed were crack deflection and cavity formation. Considering the advantageous effects of GnPs on these novel composites and cost efficiency gained by the use of recycled rubber, these composites have the potential to be used to manufacture various components in the automotive and aeronautic industries as well as smart building materials in civil engineering applications.Cornelia de Lange Syndrome (CdLS) is a rare congenital genetic disease causing abnormal unique facial phenotypes, several defects in organs and body parts, and mental disorder or intellectual disorder traits. Main causes of CdLS have been reported as variants in cohesin complex genes, in which mutations in the NIPBL gene have been estimated to account for up to 80%. Our study included three Vietnamese patients with typical CdLS phenotypes. Whole exome sequencing revealed two known heterozygous mutations c.6697G>A (p.Val2233Met) and c.2602C>T (p.Arg868X), and a novel heterozygous mutation c.4504delG (p.Val1502fsX87) in the NIPBL gene of the three patients. In silico analyses of the identified mutations predicted possible damaging and truncating effects on the NIPBL protein. Inherited analyses in the patients' families showed that all of the mutations are de novo. Our results lead a definitive diagnosis of patients with CdLS and expand the spectrum of mutations in the NIPBL gene. These findings also confirm whole exome sequencing is an efficient tool for genetic screening of CdLS.The protein kinase JNK1 exhibits high activity in the developing brain, where it regulates dendrite morphology through the phosphorylation of cytoskeletal regulatory proteins. JNK1 also phosphorylates dendritic spine proteins, and Jnk1-/- mice display a long-term depression deficit. Whether JNK1 or other JNKs regulate spine morphology is thus of interest. Here, we characterize dendritic spine morphology in hippocampus of mice lacking Jnk1-/- using Lucifer yellow labelling. We find that mushroom spines decrease and thin spines increase in apical dendrites of CA3 pyramidal neurons with no spine changes in basal dendrites or in CA1. Consistent with this spine deficit, Jnk1-/- mice display impaired acquisition learning in the Morris water maze. In hippocampal cultures, we show that cytosolic but not nuclear JNK, regulates spine morphology and expression of phosphomimicry variants of JNK substrates doublecortin (DCX) or myristoylated alanine-rich C kinase substrate-like protein-1 (MARCKSL1), rescue mushroom, thin, and stubby spines differentially. LY2228820 supplier These data suggest that physiologically active JNK controls the equilibrium between mushroom, thin, and stubby spines via phosphorylation of distinct substrates.This paper introduces an original, eco-friendly and scalable method to synthesize ferrihydrite nanoparticles in aqueous suspensions, which can also be used as a precursor to produce α-hematite nanoparticles. The method, never used before to synthesize iron oxides, is based on an ion exchange process allowing to operate in one-step, with reduced times, at room temperature and ambient pressure, and using cheap or renewable reagents. The influence of reagent concentrations and time of the process on the ferrihydrite features is considered. The transformation to hematite is then analyzed and discussed in relation to different procedures (1) A natural aging in the water at room temperature; and (2) heat treatments at different temperatures and times. Structural and morphological features of the obtained nanoparticles are investigated by means of several techniques, such as X-ray diffraction, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, thermal analysis, nitrogen adsorption and magnetic measurements. Ferrihydrite shows the typical spherical morphology and a very high specific surface area of 420 m2/g. Rhombohedral or plate-like hexagonal hematite nanoparticles are obtained by the two procedures, characterized by dimensions of 50 nm and 30 nm, respectively, and a specific surface area up to 57 m2/g, which is among the highest values reported in the literature for hematite NPs.BACKGROUND The marine-derived triterpenoid frondoside A inhibits the phosphatidylinositol-3-kinase (PI3K) pathway in cancer cells. Because this pathway is also crucially involved in platelet activation, we studied the effect of frondoside A on thrombus formation. METHODS Frondoside A effects on platelet viability, surface adhesion molecule expression, and intracellular signaling were analyzed by flow cytometry and Western blot. The effect of frondoside A was analyzed by photochemically induced thrombus formation in the mouse dorsal skinfold chamber model and by tail vein bleeding. RESULTS Concentrations of up to 15 µM frondoside A did not affect the viability of platelets, but reduced their surface expression of P-selectin (CD62P) and the activation of glycoprotein (GP)IIb/IIIa after agonist stimulation. Additional mechanistic analyses revealed that this was mediated by downregulation of PI3K-dependent Akt and extracellular-stimuli-responsive kinase (ERK) phosphorylation. Frondoside A significantly prolonged the complete vessel occlusion time in the mouse dorsal skinfold chamber model of photochemically induced thrombus formation and also the tail vein bleeding time when compared to vehicle-treated controls.

Autoři článku: Gloverbriggs6553 (Schulz Cassidy)