Dunlapkenny0528

Z Iurium Wiki

Verze z 23. 10. 2024, 21:54, kterou vytvořil Dunlapkenny0528 (diskuse | příspěvky) (Založena nová stránka s textem „The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetund. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.Heschl's gyrus (HG) is a brain area that includes the primary auditory cortex in humans. Due to the limitations in obtaining direct neural measurements from this region during naturalistic speech listening, the functional organization and the role of HG in speech perception remain uncertain. Here, we used intracranial EEG to directly record neural activity in HG in eight neurosurgical patients as they listened to continuous speech stories. We studied the spatial distribution of acoustic tuning and the organization of linguistic feature encoding. We found a main gradient of change from posteromedial to anterolateral parts of HG. We also observed a decrease in frequency and temporal modulation tuning and an increase in phonemic representation, speaker normalization, speech sensitivity, and response latency. learn more We did not observe a difference between the two brain hemispheres. These findings reveal a functional role for HG in processing and transforming simple to complex acoustic features and inform neurophysiological models of speech processing in the human auditory cortex.Huntington's Disease (HD), an autosomal dominant genetic disorder caused by a mutation in the Huntingtin gene (HTT), displays a stereotyped topography in the human brain and a stereotyped progression, initially appearing in the striatum. Like other degenerative diseases, spatial topography of HD is divorced from where implicated genes are expressed, a dissociation whose mechanistic underpinning is not currently understood. Cell autonomous molecular factors characterized by gene expression signatures, including proteolytic and post translational modifications, play a role in vulnerability to disease. Non-autonomous mechanisms, likely involving the brain's anatomic or functional connectivity patterns, might also be responsible for selective vulnerability in HD. Leveraging a large dataset of 635 subjects from a multinational study, this paper tests various cell-autonomous and non-autonomous models that can explain HD topography. We test whether the expression patterns of implicated genes is sufficient to explain regional HD atrophy, or whether the network transmission of protein products is required to explain them. We find that network models are capable of predicting, to a high degree, observed atrophy in human subjects. Lastly, we propose a model of anterograde network transmission, and show that it is the most parsimonious yet most likely to explain observed atrophy patterns in HD. Collectively, these data indicate that pathology spread in HD may be mediated by the brain's intrinsic structural network organization. This is the first study to systematically and quantitatively test multiple hypotheses of pathology spread in living human subjects with HD.Dopamine has direct and complex vasoactive effects on cerebral circulation. Catechol-O-methyltransferase (COMT) regulates cortical dopamine, and its activity can be influenced both genetically and pharmacologically. COMT activity influences the functional connectivity of the PFC at rest, as well as its activity during task performance, determined using blood oxygen level-dependent (BOLD) fMRI. However, its effects on cerebral perfusion have been relatively unexplored. Here, 76 healthy males, homozygous for the functional COMT Val158Met polymorphism, were administered either the COMT inhibitor tolcapone or placebo in a double-blind, randomised design. We then assessed regional cerebral blood flow at rest using pulsed arterial spin labelling. Perfusion was affected by both genotype and drug. COMT genotype affected frontal regions (Val158 > Met158), whilst tolcapone influenced parietal and temporal regions (placebo > tolcapone). There was no genotype by drug interaction. Our data demonstrate that lower COMT activity is associated with lower cerebral blood flow, although the regions affected differ between those affected by genotype compared with those altered by acute pharmacological inhibition. The results extend the evidence for dopaminergic modulation of cerebral blood flow. Our findings also highlight the importance of considering vascular effects in functional neuroimaging studies, and of exercising caution in ascribing group differences in BOLD signal solely to altered neuronal activity if information about regional perfusion is not available.How does the human brain support reasoning about social relations (e.g., social status, friendships)? Converging theories suggest that navigating knowledge of social relations may co-opt neural circuitry with evolutionarily older functions (e.g., shifting attention in space). Here, we analyzed multivoxel response patterns of fMRI data to examine the neural mechanisms for shifting attention in knowledge of a social hierarchy. The "directions" in which participants mentally navigated social knowledge were encoded in multivoxel patterns in superior parietal cortex, which also encoded directions of attentional shifts in space. Exploratory analyses implicated additional regions of posterior parietal and occipital cortex in encoding analogous mental operations in space and social knowledge. However, cross-domain analyses suggested that attentional shifts in space and social knowledge are likely encoded in functionally independent response patterns. Additionally, cross-participant multivoxel pattern similarity analyses indicated that "directions of mental navigation in social knowledge are signaled consistently across participants and across different social hierarchies in a set of brain regions, including the right superior parietal lobule.

Autoři článku: Dunlapkenny0528 (Poole Hanna)