Ruiznoel5429

Z Iurium Wiki

Verze z 23. 10. 2024, 21:02, kterou vytvořil Ruiznoel5429 (diskuse | příspěvky) (Založena nová stránka s textem „Cytoplasmic male sterility (CMS) is maternally inherited trait, which hinders the ability to produce viable pollen in plants. It serves as a useful tool fo…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Cytoplasmic male sterility (CMS) is maternally inherited trait, which hinders the ability to produce viable pollen in plants. It serves as a useful tool for hybrid seed production via exploiting heterosis in crops. The molecular mechanism of CMS and fertility restoration has been investigated in different crops. However, limited number of reports is available on comparison of Ogura- and Polima-CMS with their shared maintainer in Chinese cabbage. We performed transcript profiling of sterile Ogura CMS (Tyms), Polima CMS (22m2) and their shared maintainer line (231-330) with an aim to identify genes associated with male sterility. In this work, we identified 912, 7199 and 6381 DEGs (Differentially Expressed Genes) in 22m2 Vs Tyms, 231-330 VS 22m2 and 231-330 Vs Tyms, respectively. The GO (Gene Ontology) annotation and KEGG pathway analysis suggested that most of the DEGs were involved in pollen development, carbon metabolism, lipase activity, lipid binding, penta-tricopeptide repeat (PPR), citrate cycle and oxidative phosphorylation, which were down-regulated in both CMS lines. This result will provide an important resource for further understanding of functional pollen development, the CMS mechanism and to improve molecular breeding in Chinese cabbage. © Prof. H.S. Srivastava Foundation for Science and Society 2020.The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 Zea mays NAC TFs were obtained from the transcriptome analysis using drought-resistant maize inbred line Y882 as experimental material under PEG stress and rewatering treatment. Comprehensive analyses were conducted including genes structure, chromosomal localization, phylogenetic tree and motif prediction, cis-elements and expression patterns. The results showed that the 87 ZmNAC genes distributed on 10 chromosomes and were categorized into 15 groups based on their conserved gene structure and motifs. Phylogenetic tree analysis was also constructed referencing to the counterparts of Arabidopsis and rice, and the stress-related cis-elements in the promoter region were also analyzed. 87 ZmNAC genes exhibited different expression levels at 3 treatment points, indicating different response to drought stress. This genome-wide analysis of 87 ZmNAC genes will provide basis for further gene function detection. © Prof. H.S. Srivastava Foundation for Science and Society 2020.Free radicals, the key mediators of a range of oxidative reactions involved in lipid oxidation are responsible for food quality deterioration leading to several health hazards. Antioxidants synthesized naturally or synthetically are capable of preventing oxidation of lipids and other related compounds. However, natural antioxidants have many benefits over synthetic ones. Sesame seeds contain large amount of natural bioactive components with high antioxidant potential. In the present study, 14 accessions of sesame containing wild species and cultivars were investigated. The antioxidant potential of sesame seed meal extract was evaluated by total phenolic content (TPC) method using Folin-Ciocalteu reagent, linoleic acid peroxidation by Ferric thiocyanate method, and free radical scavenging assay with 2,2-diphenyl-1-picryl hydrazyl radical. S. laciniatum showed highest mean values for total polyphenol content with maximum % inhibition of linoleic acid peroxidation on 10th day of course of the reaction span and highest antioxidant scavenging power. S. indicum subsp. malabaricum and S. radiatum also showed high total phenol content and radical scavenging capacity. Among the Sesamum indicum cultivars, Gujarat til 2 showed high TPC and high radical scavenging activity. Higher antioxidant property of Sesamum species in comparison to sesame cultivars highlights the need to utilize the wild genepool for the improvement of cultigens for enhanced nutraceutical value. © Prof. H.S. Srivastava Foundation for Science and Society 2020.A total of 17,439 mature miRNAs (~ 21 nt) earlier generated through RNA seq in the pomegranate were used for in silico analysis. After complexity reduction, a total of 1922 representative mature miRNAs were selected and used as query sequences against pomegranate genome to retrieve 2540 homologous contigs with flanking regions (~ 800). By using pre-miRNA prediction web server, a total of 1028 true contigs harbouring pri-miRNAs encoding 1162 pre-miRNAs were identified. Survey of these sequences for SSRs yielded a total of 1358 and 238 SSRs specific to pri-miRNA and pre-miRNAs, respectively. Of these, primer pairs were designed for 897 pri-miRNA and 168 pre-miRNA SSRs. In pri-miRNA sequences, hexa-nucleotides repeats were found to be most abundant (44.18%) followed by mono- (18.41%) and di-nucleotide (17.01%), which is also observed in pre-miRNA sequences. Further, a set of 51 randomly selected pre-miRNA-SSRs was examined for marker polymorphism. selleck chemical The experimental validation of these markers on eight pomegranate genotypes demonstrated 92.15% polymorphism. Utility of these functional markers was confirmed via examination of genetic diversity of 18 pomegranate genotypes using 15 miRNA-SSRs. Further, potential application of miRNA-SSRs for discovery of trait specific candidate genes was showed by validating 51 mature miRNA against publically available 2047 EST sequences of pomegranate by target and network analysis. In summary, the current study offers novel functional molecular markers for pomegranate genetic improvement. © Prof. H.S. Srivastava Foundation for Science and Society 2020.Study of genetic diversity in crop plants is essential for the selection of appropriate germplasm for crop improvement. As salinity posses a serious environmental challenge to rice production globally and especially in India, it is imperative that the study of large collections of germplasms be undertaken to search for salt tolerant stocks. In the present study, 64 indica germplasms were collected from different agro-climatic zones of West Bengal, India, from the Himalayan foothills in the northern part down to the southern saline belt of the state keeping in view the soil characteristics and other edaphic factors prevailing in the region. Salt tolerance parameters were used to screen the large set of germplasms in terms of root-shoot length, fresh-dry weight, chlorophyll content, Na+/K+ ratio and germination potential in presence of salt. Standard evaluation score or SES was calculated to find out tolerant to sensitive cultivar. Twenty-one SSR markers, some associated with the Saltol QTL and others being candidate gene based SSR (cgSSR) were used to study the polymorphism of collected germplasm.

Autoři článku: Ruiznoel5429 (Petersson Daugaard)