Matthiesensosa9266

Z Iurium Wiki

Verze z 23. 10. 2024, 20:20, kterou vytvořil Matthiesensosa9266 (diskuse | příspěvky) (Založena nová stránka s textem „This review covers current knowledge of selenium in the dietary intake, its bioavailability, metabolism, functions, biomarkers, supplementation and toxicit…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This review covers current knowledge of selenium in the dietary intake, its bioavailability, metabolism, functions, biomarkers, supplementation and toxicity, as well as its relationship with diseases and gut microbiota specifically on the symbiotic relationship between gut microflora and selenium status. Selenium is essential for the maintenance of the immune system, conversion of thyroid hormones, protection against the harmful action of heavy metals and xenobiotics as well as for the reduction of the risk of chronic diseases. Selenium is able to balance the microbial flora avoiding health damage associated with dysbiosis. Experimental studies have shown that inorganic and organic selenocompounds are metabolized to selenomethionine and incorporated by bacteria from the gut microflora, therefore highlighting their role in improving the bioavailability of selenocompounds. Dietary selenium can affect the gut microbial colonization, which in turn influences the host's selenium status and expression of selenoproteoma. Selenium deficiency may result in a phenotype of gut microbiota that is more susceptible to cancer, thyroid dysfunctions, inflammatory bowel disease, and cardiovascular disorders. Although the host and gut microbiota benefit each other from their symbiotic relationship, they may become competitors if the supply of micronutrients is limited. Intestinal bacteria can remove selenium from the host resulting in two to three times lower levels of host's selenoproteins under selenium-limiting conditions. There are still gaps in whether these consequences are unfavorable to humans and animals or whether the daily intake of selenium is also adapted to meet the needs of the bacteria.Traumatic brain injury (TBI) results in neuronal, axonal and glial damage. Interventions targeting neuroinflammation to enhance recovery from TBI are needed. Exercise is known to improve cognitive function in TBI patients. Omega-3 fatty acids and vitamin D reportedly reduce inflammation, and in combination, might improve TBI outcomes. This study examined how an anti-inflammatory diet affected plasma TBI biomarkers, voluntary exercise and behaviors following exposure to mild TBI (mTBI). Adult, male rats were individually housed in cages fitted with running wheels and daily running distance was recorded throughout the study. A modified weight drop method induced mTBI, and during 30 days post-injury, rats were fed diets supplemented with omega-3 fatty acids and vitamin D3 (AIDM diet), or non-supplemented AIN-76A diets (CON diet). Behavioral tests were periodically conducted to assess functional deficits. Plasma levels of Total tau (T-tau), glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1e and chronic neural tissue damage following exposure to TBI. The anti-inflammatory diet significantly altered the temporal profiles of plasma T-tau, GFAP, and UCH-L1 following mTBI. Voluntary exercise protected against mTBI-induced cognitive deficits, but had no impact on plasma levels of neurotrauma biomarkers. Thus, the prophylactic effect of exercise, when combined with an anti-inflammatory diet, may facilitate recovery in patients with mTBI.This study aimed to evaluate changes in dietary and lifestyle habits during the period of confinement due to the first wave of the COVID-19 pandemic in Ibero-American countries. A cross-sectional investigation was conducted with 6,325 participants of both genders (68% women), over 18 years of age and from five countries Brazil (N = 2,171), Argentina (N = 1,111), Peru (N = 1,174), Mexico (N = 686), and Spain (N = 1,183). TMZ chemical clinical trial Data were collected during the year 2020, between April 01 and June 30 in Spain and between July 13 and September 26, in the other countries studied using a self-administered online survey designed for the assessment of sociodemographic, employment, physical activity, health status, and dietary habits changes. Most participants (61.6%), mainly those from Spain, remained constant, without improving or worsening their pattern of food consumption. Among those who changed, a pattern of better eating choices prevailed (22.7%) in comparison with those who changed toward less healthy choices (15.7%).cipants remained constant in their eating habits, lifestyle changes and anxiety feelings were reported. Among those who changed patterns of food consumption, healthier choices prevailed, with differences between countries. However, there were alterations in the distribution of meals, with higher consumption of snacks and small meals. These results can be used to guide policies to prevent deleterious consequences that may affect the incidence of chronic diseases.Almond cultivation in Sicily is experiencing a phase of great interest which is mainly concentrated in the development of specialized orchards, with irrigation and by adopting cultivars with high qualitative and quantitative performances. These are mostly Mediterranean genotypes with high fat content and hard or semi-hard shell, extremely different from the varieties of Californian diffusion. The development of the sector comprises the primary production of almonds but also a series of secondary products which often represent a burden for the company. From these considerations several researches have been developed with the aim of giving a value to these by-products through circular economy paths. One of the by-products widely produced, besides the shell, is the skin which covers the seed and is produced during the peeling phase. It is well-known that tegument is an important component of almond because it contains important bioactive substances (phenols and aromas) which are usually dispersed during peeling.while roasting has revealed to be a more effective skin separation approach.This work investigates the role of hydrogen sulfide (H2S) in the browning and regulating the antioxidant defensive system in fresh-cut Chinese water chestnuts. The samples were fumigated with 0, 10, and 15 μl L-1 of H2S and stored at 10°C for 8 days. The results indicated that the H2S treatment significantly inhibited the browning of fresh-cut Chinese water chestnuts, reduced superoxide anion ( O 2 · - ) production rate and H2O2 content accumulation, promoted the increase of total phenol content, and enhanced activities of catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) (P less then 0.05). On the other hand, phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD) activities remained at a low level in the H2S treatment (P less then 0.05). This result suggested that H2S treatment might be a promising approach to inhibit browning and prolong the shelf life by enhancing oxidation resistance and inhibiting browning enzyme activity of fresh-cut Chinese water chestnuts during storage.

Autoři článku: Matthiesensosa9266 (McCall Poe)