Fergusonkane2612

Z Iurium Wiki

Verze z 23. 10. 2024, 20:04, kterou vytvořil Fergusonkane2612 (diskuse | příspěvky) (Založena nová stránka s textem „The DNA methylation levels detected for CpG sites from ELOVL2, FHL2, and MIR29B2 with each system were compared. A restricted three CpG-site age prediction…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The DNA methylation levels detected for CpG sites from ELOVL2, FHL2, and MIR29B2 with each system were compared. A restricted three CpG-site age prediction model was rebuilt for each system, as well as for a combination of technologies, based on previous training datasets, and age predictions were calculated accordingly for all the samples detected with the previous technologies. While the DNA methylation patterns and subsequent age predictions from EpiTYPER®, pyrosequencing, and MiSeq systems are largely comparable for the CpG sites studied, SNaPshotTM gives bigger differences reflected in higher predictive errors. However, these differences can be reduced by applying a z-score data transformation.High-throughput phenotyping technologies are growing in importance in livestock systems due to their ability to generate real-time, non-invasive, and accurate animal-level information. Collecting such individual-level information can generate novel traits and potentially improve animal selection and management decisions in livestock operations. One of the most relevant tools used in the dairy and beef industry to predict complex traits is infrared spectrometry, which is based on the analysis of the interaction between electromagnetic radiation and matter. The infrared electromagnetic radiation spans an enormous range of wavelengths and frequencies known as the electromagnetic spectrum. The spectrum is divided into different regions, with near- and mid-infrared regions being the main spectral regions used in livestock applications. The advantage of using infrared spectrometry includes speed, non-destructive measurement, and great potential for on-line analysis. This paper aims to review the use of mid- and near-infrared spectrometry techniques as tools to predict complex dairy and beef phenotypes, such as milk composition, feed efficiency, methane emission, fertility, energy balance, health status, and meat quality traits. Although several research studies have used these technologies to predict a wide range of phenotypes, most of them are based on Partial Least Squares (PLS) and did not considered other machine learning (ML) techniques to improve prediction quality. Therefore, we will discuss the role of analytical methods employed on spectral data to improve the predictive ability for complex traits in livestock operations. Furthermore, we will discuss different approaches to reduce data dimensionality and the impact of validation strategies on predictive quality.

Previous cancer prognostic prediction models often consider only the most important transcriptomic expressions, and their power is limited. It is unknown whether prediction power can be further improved when additional transcriptomic information is incorporated.

To integrate transcriptomes, four models are compared based on 32 types of cancer in the Cancer Genome Atlas, including the general Cox model with only clinical covariates, the Cox model with a lasso penalty (coxlasso), the Cox model with an elastic net penalty (coxenet), and the mixed-effects Cox model (coxlmm). Furthermore, we partition the survival variance into the relative contribution of clinical and transcriptomic components within the framework of coxlmm. Finally, the influence of different numbers of genes was evaluated in the context of coxlmm.

Compared with the clinical covariates-only Cox model, the average prediction gain was 2.4% for coxlasso, 4.2% for coxenet, and 7.2% for coxlmm across 16 low-censored cancers; a significant elevaival variation across cancers.

This study demonstrates that the integration of transcriptomic information can substantially improve prognostic prediction accuracy, but the prediction performance is cancer-specific and varies across cancer types. It further reveals that gene expression exhibits distinct contributions to survival variation across cancers.[This corrects the article DOI 10.3389/fgene.2019.00778.].

Clear cell renal cell carcinoma (ccRCC) is a common type of fatal malignancy in the urinary system. Selleck Ki16425 As the therapeutic strategies of ccRCC are severely limited at present, the prognosis of patients with metastatic carcinoma is usually not promising. Revealing the pathogenesis and identifying hub candidate genes for prognosis prediction and precise treatment are urgently needed in metastatic ccRCC.

In the present study, we conducted a series of bioinformatics studies with the gene expression profiles of ccRCC samples from Gene Expression Omnibus (GEO) and the cancer genome atlas (TCGA) database for identifying and validating the hub gene of metastatic ccRCC. We constructed a co-expression network, divided genes into co-expression modules, and identified ccRCC-related modules by weighted gene co-expression network analysis (WGCNA) with data from GEO. Then, we investigated the functions of genes in the ccRCC-related modules by enrichment analyses and built a sub-network accordingly. A hub candidate gene of t8B is related to that of targets of precise therapies.

Our study proposed

as a hub candidate gene of ccRCC for the first time. Our conclusion may provide a brand-new clue for prognosis evaluating and precise treatment for ccRCC in the future.

Our study proposed KIF18B as a hub candidate gene of ccRCC for the first time. Our conclusion may provide a brand-new clue for prognosis evaluating and precise treatment for ccRCC in the future.Social epigenomics has emerged as an integrative field of research focused on identification of socio-environmental factors, their influence on human biology through epigenomic modifications, and how they contribute to current health disparities. Several health disparities studies have been published using genetic-based approaches; however, increasing accessibility and affordability of molecular technologies have allowed for an in-depth investigation of the influence of external factors on epigenetic modifications (e.g., DNA methylation, micro-RNA expression). Currently, research is focused on epigenetic changes in response to environment, as well as targeted epigenetic therapies and environmental/social strategies for potentially minimizing certain health disparities. Here, we will review recent findings in this field pertaining to conditions and diseases over life span encompassing prenatal to adult stages.

Autoři článku: Fergusonkane2612 (Owen Rosenthal)