Kayalove1224

Z Iurium Wiki

Verze z 23. 10. 2024, 15:18, kterou vytvořil Kayalove1224 (diskuse | příspěvky) (Založena nová stránka s textem „A series of new dinuclear platinum(ii) complexes with the general formula [Pt2(μ-HL)4] (1-4), where H2L is 4-[(5-chloro-2-hydroxy-benzylidene)-amino]-3-R-…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

A series of new dinuclear platinum(ii) complexes with the general formula [Pt2(μ-HL)4] (1-4), where H2L is 4-[(5-chloro-2-hydroxy-benzylidene)-amino]-3-R-1,2,4-triazole-5-thione R = H (1), methyl (2), ethyl (3) and propyl (4), were synthesized and characterized. The X-ray crystal structures of 2, 3 and 4 reveal that the two platinum atoms form a paddlewheel core with four chelating triazole ligands as bridges, revealing a radically different structure than those of the traditional anticancer platinum(ii) complexes. These complexes show higher in vitro antiproliferative activity against human liver hepatocellular carcinoma (HepG2) and human breast adenocarcinoma (MCF7) than human lung cancer (A549) and human normal hepatocyte (HL-7702) cell lines. In particular, 3 exhibits antiproliferative activity (IC50 = 5.5 μM) against HepG2 cells comparable to that of cisplatin. Different from the traditional anticancer platinum(ii) complexes with high DNA affinity, 3 binds very weakly to DNA. Upon comparison, it exhibits potent inhibiting activity against protein tyrosine phosphatases 1B (PTP1B, IC50 = 16 μM) through possible binding to its active sites and its binding constant is 5.28 × 104 M-1. The results suggest that the antiproliferative mechanism of 3 against HepG2 cells may be different from that of cisplatin.One-dimensional (1D) selenium and tellurium crystalize in helical chainlike structures and thus exhibit fascinating properties. By performing first-principles calculations, we have researched the linear and nonlinear optical (NLO) properties of 1D Se and Te, and find that both systems exhibit pronounced NLO responses. In particular, 1D Se is found to possess a large second-harmonic generation coefficient with the χ value being up to 7 times larger than that of GaN, and is even several times larger than that of the bulk counterpart. On the other hand, 1D Te also produces significant NLO susceptibility χ which exceeds that of bulk GaN by 5 times. Furthermore, 1D Te is shown to possess a prominent linear electro-optic coefficient rxxx(0). In particular, the Te chain exhibits a large shift current response and the maximum is twice as large as the maximal photovoltaic responses obtained from BaTiO3. Therefore, 1D Se and Te may find potential applications in solar energy conversion, electro-optical switches, and so on. Finally, the much stronger NLO effects of 1D Se and Te are attributed to their one-dimensional structures with high anisotropy, strong covalent bonding and lone-pair electrons. These findings will contribute further to experimental studies and the search for excellent materials with large NLO effects.

SARS-CoV-2 transmission risk generally increases with the proximity of those shedding the virus to those susceptible to infection. Thus, this risk is a function of both the number of people and the area they occupy. However, the latter continues to evade the COVID-19 testing policy.

The aim of this study is to analyze per capita COVID-19 testing data reported for Alabama to evaluate whether testing realignment along population density, rather than density agnostic per capita, would be more effective.

Descriptive statistical analyses were performed for population, density, COVID-19 tests administered, and positive cases for all 67 Alabama counties.

Tests reported per capita appeared to suggest widespread statewide testing. However, there was little correlation (

=0.28,

=.02) between tests per capita and the number of cases. In terms of population density, new cases were higher in areas with a higher population density, despite relatively lower test rates as a function of density.

Increased testing in areas with lower population density has the potential to induce a false sense of security even as cases continue to rise sharply overall.

Increased testing in areas with lower population density has the potential to induce a false sense of security even as cases continue to rise sharply overall.Agricultural non-point source pollution refers that substance such as nitrogen and phosphorus cause water environment pollution through surface runoff and underground leakage in agricultural production activities. Water environment pollution related to agricultural non-point source pollution in the Huaihe River Basin is becoming more and more prominent. Guanosine5monophosphate Therefore, it is necessary to analyze the characteristic of soil nutrient in cultivated land and explore the spatial variation and influencing factors of soil nutrients at the watershed scale. A total of 239 topsoil samples were collected from the Guo river basin, and the related factors of soil organic matter (SOM), total carbon (TC), total nitrogen (TN), total phosphorous (TP), total potassium (TK) and potential of hydrogen (PH) were studied by using descriptive statistics and geostatistical methods. The results showed that TK and PH were weak variation, while SOM, TC, TN and TP were medium variation. Soil pH, TP, TK, TC and SOM had moderate spatial variability, which was caused by both random factors and structural factors such as soil texture, soil type, fertilization and local ecological restoration management. Soil TN showed a strong spatial correlation, mainly due to soil texture and soil type. If the recommended fertilization amount is still given based on the average value of soil nutrients ignoring the spatial heterogeneity, it will not only affect crop production efficiency and fertilizer utilization, but may also cause greater environmental pollution. This study can provide a theoretical basis for the management of agro-ecological environments throughout the basin area.The kinetic boundary condition (KBC) represents the evaporation or condensation of molecules at the vapor-liquid interface for molecular gas dynamics (MGD). When constructing the KBC, it is necessary to classify molecular motions into evaporation, condensation, and reflection in molecular-scale simulation methods. Recently, a method that involves setting the vapor boundary and liquid boundary has been used for classifying molecules. The position of the vapor boundary is related to the position where the KBC is applied in MGD analyses, whereas that of the liquid boundary has not been uniquely determined. Therefore, in this study, we conducted molecular dynamics simulations to discuss the position of the liquid boundary for the construction of KBCs. We obtained some variables that characterize molecular motions such as the positions that the molecules reached and the time they stayed in the vicinity of the interface. Based on the characteristics of the molecules found from these variables, we investigated the valid position of the liquid boundary.

Autoři článku: Kayalove1224 (Tucker Richmond)