Wheelermortensen7614

Z Iurium Wiki

Verze z 22. 10. 2024, 22:34, kterou vytvořil Wheelermortensen7614 (diskuse | příspěvky) (Založena nová stránka s textem „The fast estimation of blue-green laser transmission characteristics through the fluctuating sea surface, such as refraction angles and transmittance, is v…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The fast estimation of blue-green laser transmission characteristics through the fluctuating sea surface, such as refraction angles and transmittance, is very important to correct operating parameters, detection depth and anti-detection warning in airborne Light Detection and Ranging (LiDAR) applications. However, the geometry of the sea surface is changed by complex environment factors, such as wind and wave, which significantly affect the rapid acquisition of the blue-green laser transmission characteristics. To address this problem, a fast analysis method is provided to rapidly compute the blue-green laser transmittance and refraction angles through the fluctuating sea surface driven by different wind directions and speeds. In the method, a three-dimensional wave model driven by the wind was built to describe the wave spatial distribution varying with time. Using the wave model, the propagation path of the scanning laser footprint was analyzed using the proposed meshing method, thus the transmittance and refraction angles of the optical path can be fast obtained by using parallel computing. The simulation results imply that the proposed method can reduce the time consumption by 70% compared with the traditional analytical method with sequential computing. TMP269 This paper provides some statistical laws of refraction angles and transmittance through the fluctuating sea surface under different wind conditions, which may serve as a basic for fast computation of airborne LiDAR transmission characteristics in complex environments.Two-dimensional (2D) materials and their van der Waals heterojunctions offer the opportunity to combine layers with different properties as the building blocks to engineer new functional materials for high-performance devices, sensors, and water-splitting photocatalysts. A tremendous amount of work has been done thus far to isolate or synthesize new 2D materials as well as to form new heterostructures and investigate their chemical and physical properties. This article collection covers state-of-the-art experimental, numerical, and theoretical research on 2D materials and on their van der Waals heterojunctions for applications in electronics, optoelectronics, and energy generation.Asphalt self-healing by encapsulated rejuvenating agents is considered a revolutionary technology for the autonomic crack-healing of aged asphalt pavements. This paper aims to explore the use of Bio-Oil (BO) obtained from liquefied agricultural biomass waste as a bio-based encapsulated rejuvenating agent for self-healing of bituminous materials. Novel BO capsules were synthesized using two simple dripping methods through dropping funnel and syringe pump devices, where the BO agent was microencapsulated by external ionic gelation in a biopolymer matrix of sodium alginate. Size, surface aspect, and elemental composition of the BO capsules were characterized by optical and scanning electron microscopy and energy-dispersive X-ray spectroscopy. Thermal stability and chemical properties of BO capsules and their components were assessed through thermogravimetric analysis (TGA-DTG) and Fourier-Transform Infrared spectroscopy (FTIR-ATR). The mechanical behavior of the capsules was evaluated by compressive and low-load micro-indentation tests. The self-healing efficiency over time of BO as a rejuvenating agent in cracked bitumen samples was quantified by fluorescence microscopy. Main results showed that the BO capsules presented an adequate morphology for the asphalt self-healing application, with good thermal stability and physical-chemical properties. It was also proven that the BO can diffuse in the bitumen reducing the viscosity and consequently self-healing the open microcracks.Glioblastomas are aggressive, fast-growing primary brain tumors. After standard-of-care treatment with radiation in combination with temozolomide, the overall prognosis of newly diagnosed patients remains poor, with a 2-year survival rate of less than 20%. The remarkable survival benefit gained with immunotherapy in several extracranial tumor types spurred a variety of experimental intervention studies in glioblastoma patients. These ranged from immune checkpoint inhibition to vaccinations and adoptive T cell therapies. Unfortunately, almost all clinical outcomes were universally disappointing. In this perspective, we provide an overview of immune interventions performed to date in glioblastoma patients and re-evaluate their performance. We argue that shortcomings of current immune therapies in glioblastoma are related to three major determinants of resistance, namely low immunogenicity; immune privilege of the central nervous system; and immunosuppressive micro-environment. In this perspective, we propose strategies that are guided by exact shortcomings to sensitize glioblastoma prior to treatment with therapies that enhance numbers and/or activation state of CD8 T cells.Antimicrobial resistance (AMR) has important implications for the continued use of antibiotics to control infectious diseases in both beef cattle and humans. AMR along the One Health continuum of the beef production system is largely unknown. Here, whole genomes of presumptive extended-spectrum β-lactamase E. coli (ESBL-EC) from cattle feces (n = 40), feedlot catch basins (n = 42), surrounding streams (n = 21), a beef processing plant (n = 4), municipal sewage (n = 30), and clinical patients (n = 25) are described. ESBL-EC were isolated from ceftriaxone selective plates and subcultured on ampicillin selective plates. Agreement of genotype-phenotype prediction of AMR ranged from 93.2% for ampicillin to 100% for neomycin, trimethoprim/sulfamethoxazole, and enrofloxacin resistance. Overall, β-lactam (100%; blaEC, blaTEM-1, blaSHV, blaOXA, blaCTX-M-), tetracycline (90.1%; tet(A), tet(B)) and folate synthesis (sul2) antimicrobial resistance genes (ARGs) were most prevalent. The ARGs tet(C), tet(M), tet(32), blaCTX-M-1, blaCTX-M-14, blaOXA-1, dfrA18, dfrA19, catB3, and catB4 were exclusive to human sources, while blaTEM-150, blaSHV-11-12, dfrA12, cmlA1, and cmlA5 were exclusive to beef cattle sources. Frequently encountered virulence factors across all sources included adhesion and type II and III secretion systems, while IncFIB(AP001918) and IncFII plasmids were also common. Specificity and prevalence of ARGs between cattle-sourced and human-sourced presumptive ESBL-EC likely reflect differences in antimicrobial use in cattle and humans. Comparative genomics revealed phylogenetically distinct clusters for isolates from human vs. cattle sources, implying that human infections caused by ESBL-EC in this region might not originate from beef production sources.

Autoři článku: Wheelermortensen7614 (Toft Cabrera)