Dideriksenperez6235

Z Iurium Wiki

Verze z 22. 10. 2024, 22:33, kterou vytvořil Dideriksenperez6235 (diskuse | příspěvky) (Založena nová stránka s textem „We call for greater coordination among biological and socio-cultural researchers to advance insect pollinator conservation practices and policies fit for t…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We call for greater coordination among biological and socio-cultural researchers to advance insect pollinator conservation practices and policies fit for the Anthropocene. Chemical methods used to predict the bioaccessibility of hydrophobic organic compounds (HOCs) still need further development and improvement. In this work, magnetic solid-phase extraction (MSPE) based on poly(β-cyclodextrin)-coated magnetic polydopamine (Fe3O4@PDA@PCD) was first introduced to assess the bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in soils. Due to its good hydrophilicity and submicrometer scale, Fe3O4@PDA@PCD displayed a higher extraction rate for PAHs in an aqueous solution (equilibrium time  less then  5 min) than Tenax resin, which had an equilibrium time longer than 30 min. The merits of Fe3O4@PDA@PCD are beneficial to accelerate the desorption of PAHs from soil, especially for high molecular weight PAHs, in which the amounts extracted by Fe3O4@PDA@PCD were 1.2-2.8 times higher than those extracted by Tenax resin. Cathepsin G Inhibitor I purchase The desorption kinetics data were well fitted with a two- or three-fraction model. The fitting results indicated that the MSPE method can be used to predict the bioaccessible fractions of PAHs. By comparing the prediction results obtained from the MSPE method with bioassays using earthworms, a significant linear correlation (R2 = 0.98) with a slope statistically close to 1 was obtained. These results suggested that the MSPE method can act as a simple and efficient method to measure the bioaccessibility of PAHs in soil. A large number of plastic products potentially become smaller particles, including nanoplastics, under multiple actions in the environment. The interactions between nanoplastic particles and constituents in the environment, such as minerals, would greatly affect the transport, fate and toxic effects of nanoplastics. In this study, the interactions of polystyrene nanoplastic (PSNP) with four typical minerals, including goethite, magnetite, kaolinite and montmorillonite, in aqueous phase were investigated. The stability of PSNP colloidal suspension decreased in the presence of the positively charged goethite or magnetite, while it was not affected by the negatively charged montmorillonite and kaolinite, suggesting that there was a strong electrostatic attraction between PSNP and the two iron oxides. Incubation of PSNP with other three metal oxides with different surface charges, MnO2, Al2O3 and SiO2, confirmed the importance of electrostatic interaction in the stability of PSNP suspension. The transmission electron microscopy (TEM) analysis and batch adsorption experiments indicated that PSNP was effectively adsorbed on goethite or magnetite due to the strong electrostatic attraction between them. The Fourier transform infrared spectra (FTIR) and two-dimensional correlation spectroscopy (2D-COS) analyses indicated that there was strong hydrogen bonding between the -OH (γ-FeOOH) of goethite and PSNP, contributing to the higher adsorption of PSNP on goethite than magnetite. These findings shed light on the interactions of PSNP with mineral surfaces, and potential fate of PSNP under natural conditions in the water environment. Anion exchange resin (AER) adsorption is an established technology for water treatment and groundwater remediation. Two contaminants amenable to AER treatment are natural organic matter (NOM) and per- and polyfluoroalkyl substances (PFAS), specifically anionic perfluoroalkyl acids (PFAAs) such as perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). NOM is ubiquitous in natural waters and is often targeted for removal. PFAS occurrence in water resources is a human health concern. Accordingly, the goal of this research was to provide new insights on the use of AER for water treatment considering separate and combined removal of NOM and PFAAs. Batch experiments were conducted comparing polystyrene and polyacrylic AER in both chloride- and sulfate-forms using natural groundwater spiked with Suwannee River natural organic matter (SRNOM) and/or six PFAAs. The polymer composition of the AER had a significant impact on contaminant removal with polystyrene resin more effective for PFAA removal and polyacrylmoval of the other contaminant. The presence of nitrite (NO2-) is inevitable with concentrations of several mg L-1 in some typical water bodies. In this study, UV at wavelength of 365 nm was investigated to degrade contaminants of emerging concern (CECs) in the presence of NO2- at environmentally relevant concentrations (0.1-5.0 mg L-1). Six selected CECs with different structures were efficiently removed because of the generation of reactive nitrogen species (RNS) and hydroxyl radical (HO•) from photolysis of NO2-. Contributions of UV365 photolysis, RNS, and HO• to CEC degradation in UV365/NO2- system were calculated, and RNS were found to be the predominant species that are responsible for CEC degradation. The second major contributor is HO• for the degradation of selected CECs except for the case of sulfadiazine. Impacts of water matrix components (including dissolved oxygen, solution pH, and natural organic matter) on CEC degradation in UV365/NO2- system were evaluated. Furthermore, evolution profiles of CECs and NO2- in UV365/NO2- system were tracked when actual water samples were used as background, and a simultaneous removal of CECs and NO2- was observed. Transformation products of bisphenol A and carbamazepine were proposed according to the results of HPLC/MS and quantum chemistry calculations. Nitration induced by RNS and hydroxylation induced by HO• are main reactions occurred during CEC degradation in UV365/NO2- system. Overall, UV365 is a potential technology to remove CECs and NO2- in aquatic environment when residual NO2- is present. Our present study also provides possibility for the application of sunlight to remediate water co-polluted by CECs and NO2-. In this study, the adsorption capacities of two common odor compounds, 2-methylisoborneol (2-MIB) and dimethyl disulfide (DMDS), onto nine common types of powdered activated carbon (PAC) were comprehensively compared to screen the critical surface chemical properties affecting the adsorption performance. The results showed that the adsorption capacities of all the PACs for DMDS were generally lower than those for 2-MIB. The Spearman's rank correlation analysis indicated that the adsorption capacity for 2-MIB did not have any correlation with the PAC surface sites, while the DMDS adsorption capacity was positively related to the number of basic sites. The effect of the PAC basic sites on the DMDS adsorption was further verified by density functional theory (DFT) calculation in two adsorption modes (facial mode and edge mode). The graphene structure in the edge mode was the most favorable for DMDS adsorption with the lowest adsorption enthalpy, followed by the ketone-doped structure under the facial mode. An independent gradient model indicated that van der Waals forces were dominant in the DMDS adsorption.

Autoři článku: Dideriksenperez6235 (Mohamed Brinch)