Nicholsgade3984

Z Iurium Wiki

Verze z 22. 10. 2024, 22:33, kterou vytvořil Nicholsgade3984 (diskuse | příspěvky) (Založena nová stránka s textem „Exposure to early life trauma is common and confers risk for psychological disorders in adolescence, including posttraumatic stress disorder (PTSD). Trauma…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Exposure to early life trauma is common and confers risk for psychological disorders in adolescence, including posttraumatic stress disorder (PTSD). Trauma exposure and PTSD are also consistently linked to alterations in gray matter volume (GMV). Despite the quantity of structural neuroimaging research in trauma-exposed populations, little consensus exists amongst research groups on best practices for image processing method and manual editing procedures. The purpose of this report is to evaluate the utility of manual editing of magnetic resonance (MR) images for detecting PTSD-related group differences in GMV. Here, T1-weighted MR images from adolescent girls aged 11-17 were obtained and analyzed. Two datasets were created from the FreeSurfer reconall pipeline, one of which was manually edited by trained research assistants. Gray matter regions of interest were selected and total volume estimates were entered into linear mixed effects models with method (manual edits or automated) as a within-subjects factor and group dummy-coded with PTSD as the reference group. Consistent with prior literature, individuals with PTSD demonstrated reduced GMV of the amygdala compared to trauma-exposed and non-trauma exposed controls, independent of editing method. Our results demonstrate that amygdala GMV reductions in PTSD are robust to certain methodological choices and do not suggest a benefit to the time-intensive manual editing pipeline in FreeSurfer for quantifying PTSD-related GMV.Postmortem computed tomography is now being used more commonly for routine forensic investigation. The use of 3D reconstruction techniques including virtual gastroscopy is effective and also improves the speed of interpretation, recognition, and description of specific clinical conditions. However, it has been unclear whether postmortem virtual endoscopy could be applicable for medicolegal autopsy or whether it could complement pathological examination at autopsy. Here, we investigated the applicability of postmortem virtual gastroscopy by reviewing 295 medicolegal autopsy cases seen at our institution, and found four cases in which the technique had been able to demonstrate features corresponding to changes that were evident at autopsy. Thus,postmortem virtual gastroscopy would have only rarely been effective forvisualizing any change in the stomach in such cases. In addition, we describe in detail three of those cases in which virtual gastroscopy had been able to visualize changes in the stomach, including a gastric ulcer, a polyp, and the presence of foamy fluid, which were all verified at autopsy. In those cases, virtual gastroscopy was useful for understanding features in the stomach of the deceased, which were revealed by axial images of the abdomen, to forensic pathologists who were not familiar with PMCT 2D images. Taken together, our findings suggest that postmortem virtual gastroscopy might help facilitate clear, straightforward sharing of information about PMCT images of complex anatomical structures among radiologists and forensic pathologists, as well as non-medical professionals with a limited knowledge of anatomy and physiology.Efficient halotolerant phosphorus accumulation microorganisms are of great significance for the treatment of high-salt wastewater. In this study, a halotolerant fungus strain named MSP8 was isolated and identified as Aureobasidium sp. Salinity resistance results showed that strain MSP8 can resist the salinity from 0% to 17%, and 77.2% phosphorus removal was achieved at the optimal salinity of 5%. The strain also showed wide environmental adaptability (pH of 3-7; temperature of 20-30 °C). Batch tests and scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) characterization results verified the key role of extracellular polymeric substance (EPS) secreted by MSP8 in phosphorus removal. The actual brewery and chemical wastewater treatments exhibited that above 53.5% of phosphorus can be removed by MSP8. The excellent adaptation of MSP8 made it a potential candidate for phosphorus removal especially in saline wastewater treatment.In current biological nitrogen removal (BNR) processes, most of ammonium in municipal wastewater is biologically transformed to nitrogen gas, making ammonium recovery impossible. Thus, this article aims to provide a holistic review with in-depth discussions on (i) current BNR processes for municipal wastewater treatment, (ii) environmental and economic costs behind ammonium in municipal wastewater, (iii) state of the art of ammonium recovery from municipal wastewater including anaerobic membrane bioreactor turning municipal wastewater to a liquid fertilizer, capturing ammonium in phototrophic biomass, waste activated sludge for land application, bioelectrochemical systems, biological conversion of ammonium to nitrous oxide as a fuel oxidizer, and adsorption, (iv) feasibility and challenge of adsorption for ammonium recovery from municipal wastewater and (v) innovative municipal wastewater reclamation processes coupled with ammonium recovery. Moving forward, municipal wastewater reclamation and resource recovery should be addressed under the framework of circular economy.Ga2S3 and sulfur co-modified biochar (Ga/S-BC) composites were prepared for enhancing the adsorption of ciprofloxacin from sugarcane bagasse via the high-temperature sulfurization. In contrast with sulfur-modified biochar, Ga/S-BC exhibited the better adsorption capacity for ciprofloxacin removal. The increasing Ga content induced to the climbing and then declining adsorption activity of Ga/S-BC. Among these obtained Ga/S-BC composites, optimal 3-Ga/S-BC with a Ga content of 7.40% and surface area of 681.67 m2 g-1 exhibited the superior capacity of 330.21 mg g-1. The adsorption capacity of 3-Ga/S-BC declined to 301.66 mg g-1 after nine cycles. pH and inorganic salts also affected the adsorption capacity of 3-Ga/S-BC for ciprofloxacin removal. The adsorption isotherms of obtained Ga/S-BC composites were well described by Langmuir isotherm, and their adsorption kinetics were well estimated via second-order model. The adsorption performance of 3-Ga/S-BC in ciprofloxacin removal was a physisorption and spontaneous process.Rotten fruits could be used as an available resource due to the high organic content and low pollution introduction. In this study, four kinds of rotten fruits including banana, apple, pear and grape, were utilized as additional carbon source to improve the nitrogen removal from mature landfill leachate. With the optimal condition of carbon-nitrogen ratio 6.5 and operation time 2 d, the rotten banana group had a higher denitrification rate of 11.78 mg/(gVSS·h) than that of other groups, corresponding the 99.55% of nitrate nitrogen (NO3--N), 99.36% of total nitrogen and 94.60% of organics removal. High carbon-nitrogen ratio would contribute to more degradation of organic and humus matters, and the low cost of 0.65 €/kgNO3--N was obtained. Biodiversity analysis indicated that denitrificans and organic-degrading bacterial were enriched after the addition of rotten banana. Overall, the novel carbon source of rotten banana was a cost-efficient choice for the denitrification.The simultaneous and sensitive determination of two common pathogenic bacteria, Escherichia coli O157H7 (E. coli O157H7) and Salmonella Typhimurium (S. Typhimurium) was achieved using evanescent wave dual-color fluorescence aptasensor and the fiber nanoprobe through combining the micro/nano size and time-resolved effect. Two fluorescence labeled aptasensors, Cy3-apt-E and Cy5.5-apt-S, were regarded as biorecognition elements and signal reporters for E. coli O157H7 and S. Typhimurium, which were alternatively excited by evanescent waves originated from 520 nm to 635 nm excitation lights, respectively. The fiber nanoprobe with in-situ etched nanopores was used for distinguishing free aptasensors and aptasensors bound to pathogenic bacteria based on the limited penetrated depth of evanescent wave and the significant size difference of bacteria and nanopore. The E. selleck kinase inhibitor coli O157H7 and S. Typhimurium were directly and simultaneously quantitated in less than 35 min without the requirement of the complex immobilization of biorecognition molecules and bacteria enrichment/separation processes. The limits of detection of E. coli O157H7 and S. Typhimurium were 340 CFU/mL and 180 CFU/mL, respectively. The satisfied recovery rate of real samples testing verified the feasibility and accuracy of the proposed method. Our strategy not only greatly simplifies the detection and identification process of multiple pathogenic bacteria, but also is easy to extend as a universal technology for sensitive determination of other bacteria using their respective biorecognition molecules.17β-Estradiol (E2), the strongest of the three major physiological estrogens in females, is an important factor in the female reproductive system. The abnormal level of E2 causes health issues, such as weak bones, urinary tract infections and even depression. Here, we present a novel, sensitive and selective, electrochemical aptasensor for detection of 17β-estradiol (E2). The E2 recognition aptamer was split into two fragments the first fragment, functionalised with adamantane, is attached to poly(β-cyclodextrin) (poly(β-CD))-modified electrode surface through host-guest interactions between the adamantane and poly(β-CD). The second fragment, labelled with gold nanoparticles, forms the stem-loop structure with the first fragment only in the presence of E2. That specific recognition process triggers the change in the electrochemical signal (a change in the peak current from reduction of AuNPs), recorded by means of differential pulse voltammetry (DPV). The feasibility of the sensing design was firstly investigated on the commercially available glass carbon electrodes (GCE), with achieved a linear detection range of 1.0 × 10-13 to 1.0 × 10-8 M and a limit of detection (LoD) 0.7 fM. The sensing methodology was then translated onto single-use, disposable, laser-scribed graphene electrodes (LSGE) on a plastic substrate. The dynamic sensing range of E2 on LSGE was found to be 1.0 × 10-13 to 1.0 × 10-9 M, with a LoD of 63.1 fM, comparable to these of GCE. The successful translation of the developed E2 aptasensor from GCE to low-cost, disposable LSGE highlights a potential of this sensing platform in commercial, portable sensing detection systems for E2 and similar targets of biological interest.Viral capsid-nanoparticle hybrid structures incorporating quantum dots (QDs) into virus-like particles (VLPs) constitute an emerging bioinspired type of nanoarchitecture paradigm used for various applications. In the present study, we packed inorganic QDs in vitro into the hepatitis E virus-like particle (HEV-LP) and developed a fluorometric biosensor for HEV antibody detection. Firstly, for the preparation of QDs-encapsulated HEV-LPs (QDs@HEV-LP), the HEV-LPs produced by a recombinant baculovirus expression system were disassembled and reassembled in the presence of QDs using the self-assembly approach. Thus, the prepared QDs@HEV-LP exhibited excellent fluorescence properties similar to QDs. Further, in the presence of HEV antibodies in the serum samples, when mixed with QDs@HEV-LP, bind together and further bind to anti-IgG-conjugated magnetic nanoparticles (MNPs). The target-specific anti-IgG-MNPs and QDs@HEV-LP enrich the HEV antibodies by magnetic separation, and the separated QDs@HEV-LP-bound HEV antibodies are quantified by fluorescence measurement.

Autoři článku: Nicholsgade3984 (Salling Olsen)