Yangmeadows9216

Z Iurium Wiki

Verze z 22. 10. 2024, 22:16, kterou vytvořil Yangmeadows9216 (diskuse | příspěvky) (Založena nová stránka s textem „In this work, we performed molecular dynamics simulations of ice nucleation on a rigid surface model of cubic zinc blende structure with different surface…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In this work, we performed molecular dynamics simulations of ice nucleation on a rigid surface model of cubic zinc blende structure with different surface dipole strength and orientation. Our results show that, although substrates are excellently lattice-matched to cubic ice, ice nucleation merely occurred as the interfacial water molecules (IWs) show identical or similar orientations to that of water molecules in cubic ice. Free energy landscapes revealed that, as substrates have non-suitable dipole strength/orientation, there exist large free energy barriers for rotating dipole IWs to the right orientation to trigger ice formation. This study stresses that, beyond the traditional view of lattice match and the similarity of lattice length between the substrate and new-formed crystal, the similarity between molecular orientations of interfacial component and component in the specific new-formed crystalline face is also critical for promoting ice nucleation.Dynamic CT myocardial perfusion imaging (DCT-MPI) is a reliable examination tool for the assessment of myocardium and vascular, while its special scan protocol may result in excessive radiation exposure to patients and inevitable inter-frame motion. Lowering the tube current is a simple way to reduce radiation exposure. However, low mAs will certainly cause severe image noise, thus may further impact the accuracy of functional hemodynamic parameters, which are used for the assessment of blood supply. In this work, we present a novel scheme applying motion compensation and local low rank regularization (MC-LLR) for obtaining high quality motion compensated DCT-MPI images. Specifically, motion compensation by using robust data decomposition registration (RDDR) was introduced. Robust principal component analysis coupled with optical flow-based registration algorithm were used in RDDR. Then, the local low rank constraint on the motion compensated time series images was applied for the DCT-MPI reconstruction. One healthy mini pig and two patient datasets were used to evaluate the proposed MC-LLR algorithm. Results show that the present method achieved satisfactory image quality with higher CNRs, smaller rRMSEs, and more accurate hemodynamic parameter maps.There is widespread recognition of the challenge of an ageing profession and the need to recruit, train and retain the next generation of radiation protection professionals. This challenge was the topic of a special session at the International Radiation Protection Association IRPA15 International Congress. It is necessary to address three key aspects capturing the future professional gaining RP knowledge and skills addressing retention, development and career progression. We must support the flow of students into science-based topics and attractively promote our profession. The availability of university and other training courses, together with research opportunities, must be supported. IPI-549 ic50 Mentoring of young professionals is key, supported by empathetic seniors in the profession. The overall challenge necessitates cooperation across a wide range of organisations at both international and national level.The onlay-graft, one of the most difficult graft conditions, is used for diverse clinical conditions, including plastic and dental surgery. The graft should withstand continuous pressure from overlying tissues and have excellent bone formation capability in a limited bone contact situation. We recently developed a 3D printed Kagome-structured polycaprolactone (PCL) scaffold that has a stronger mechanical property. This study evaluated the clinical feasibility of this scaffold for onlay-graft use. The value of the scaffold containing recombinant human bone morphogenetic protein-2 in a hyaluronate-based hydrogel (rhBMP-2/HA) to enhance bone regeneration was also assessed. 3D-printed Kagome-PCL scaffolds alone (n= 12, group I) or loaded with rhBMP-2/HA (n= 12, group II) were grafted using a rat calvarial onlay-graft model. Following sacrifice at 2, 4, and 8 weeks, all 3D-printed Kagome-PCL scaffolds were accurately positioned and firmly integrated to the recipient bone. Micro-computed tomography and histology analyses revealed a constant height of the scaffolds over time in all animals. New bone grew into the scaffolds in both groups, but with greater volume in group II. These results suggest the promising clinical feasibility of the 3D-printed Kagome-PCL scaffold for onlay-graft use and it could substitute the conventional onlay-graft in the plastic and dental reconstructive surgery in the near future.Objective. Multiple convolutional neural network (CNN) classifiers have been proposed for electroencephalogram (EEG) based brain-computer interfaces (BCIs). However, CNN models have been found vulnerable to universal adversarial perturbations (UAPs), which are small and example-independent, yet powerful enough to degrade the performance of a CNN model, when added to a benign example.Approach. This paper proposes a novel total loss minimization (TLM) approach to generate UAPs for EEG-based BCIs.Main results. Experimental results demonstrated the effectiveness of TLM on three popular CNN classifiers for both target and non-target attacks. We also verified the transferability of UAPs in EEG-based BCI systems.Significance. To our knowledge, this is the first study on UAPs of CNN classifiers in EEG-based BCIs. UAPs are easy to construct, and can attack BCIs in real-time, exposing a potentially critical security concern of BCIs.We study the optimal output power and efficiency of the three-terminal quantum heat engine with Coulomb-coupled quantum-dots (CCQD). It has been well known that in the weak coupling regime, two kinds of dominant transport mechanisms are sequential tunneling and cotunneling processes in CCQD. What process becomes dominant, which can be controlled by several parameters such as temperature difference, bias voltage, Coulomb interaction and tunneling parameters, is one of the key problems to determine the performance of the heat engine. We show the parametric dependence of the output power and coefficient and find the optimal performance of this CCQD heat engine through genetic algorithm.

Autoři článku: Yangmeadows9216 (Kaya Vangsgaard)