Dickersonbak7269

Z Iurium Wiki

Verze z 22. 10. 2024, 17:50, kterou vytvořil Dickersonbak7269 (diskuse | příspěvky) (Založena nová stránka s textem „Two-dimensional (2D) materials offer exciting possibilities for numerous applications, including next-generation sensors and field-effect transistors (FETs…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Two-dimensional (2D) materials offer exciting possibilities for numerous applications, including next-generation sensors and field-effect transistors (FETs). With their atomically thin form factor, it is evident that molecular activity at the interfaces of 2D materials can shape their electronic properties. Although much attention has focused on engineering the contact and dielectric interfaces in 2D material-based transistors to boost their drive current, less is understood about how to tune these interfaces to improve the long-term stability of devices. In this work, we evaluated molybdenum disulfide (MoS2) transistors under continuous electrical stress for periods lasting up to several days. During stress in ambient air, we observed temporary threshold voltage shifts that increased at higher gate voltages or longer stress durations, correlating to changes in interface trap states (ΔNit) of up to 1012 cm-2. By modifying the device to include either SU-8 or Al2O3 as an additional dielectric capping layer on top of the MoS2 channel, we were able to effectively reduce or even eliminate this unstable behavior. However, we found this encapsulating material must be selected carefully, as certain choices actually amplified instability or compromised device yield, as was the case for Al2O3, which reduced yield by 20% versus all other capping layers. Further refining these strategies to preserve stability in 2D devices will be crucial for their continued integration into future technologies.We have probed the structural and magnetic properties of PrVO3 (PVO) thin films grown on the (001)-, (110)-, and (111)-oriented SrTiO3 (STO) substrates. By changing the substrate orientation, the film out-of-plane orientation can be tuned to [110], [100]/[010], and [011]/[311], with different in-plane crystallographic variants. Accommodation of these variants on the different substrates implies different strain states, which have direct influence on the magnetic properties of PVO films. The magnetic moment of PVO films radically enhances from 0.4 μB/f.u. for STO(001) to 2.3 μB/f.u. for STO(111). While films on the (001)-oriented STO substrate display out-of-plane anisotropy, an in-plane anisotropy is observed for films grown on the (110)- and (111)-oriented STO substrates. In addition, a strong uniaxial magnetic anisotropy is also extracted for a partially relaxed film on the (110)-oriented STO substrate. Such findings can help oxide community for the better understanding of magnetic anisotropy in vanadate thin films, a subject that still suffer from significant lack of scientific investigations.Na3Bi has attracted significant interest in both bulk form as a three-dimensional topological Dirac semimetal and ultrathin form as a wide-band gap two-dimensional topological insulator. Its extreme air sensitivity has limited experimental efforts on thin and ultrathin films grown via molecular beam epitaxy to ultrahigh vacuum environments. Here, we demonstrate air-stable Na3Bi thin films passivated with magnesium difluoride (MgF2) or silicon (Si) capping layers. Electrical measurements show that deposition of MgF2 or Si has minimal impact on the transport properties of Na3Bi while in ultrahigh vacuum. Importantly, the MgF2-passivated Na3Bi films are air-stable and remain metallic for over 100 h after exposure to air, as compared to near instantaneous degradation when they are unpassivated. Air stability enables transfer of films to a conventional high-magnetic field cryostat, enabling quantum transport measurements, which verify that the Dirac semimetal character of Na3Bi films is retained after air exposure.The class of organic-inorganic lead halides with perovskite crystal structures has recently emerged as promising materials for a variety of practical optoelectronic applications. In particular, hybrid halide perovskite quantum dots possess excellent intrinsic optoelectronic properties such as high color purity (full width at half-maximum of 24.59 nm) and photoluminescence quantum yields (92.7%). In this work, we demonstrate the use of perovskite quantum dot materials as an emissive layer of hybrid light-emitting transistors. To investigate the working mechanism of perovskite quantum dots in light-emitting transistors, we investigated the electrical and optical characteristics under both p-channel and n-channel operation. PND-1186 chemical structure Using these materials, we have achieved perovskite quantum dot light-emitting transistors with high electron mobilities of up to 12.06 cm2·V-1 s-1, high brightness of up to 1.41 × 104 cd m-2, and enhanced external quantum efficiencies of up to 1.79% operating at a source-drain potential of 40 V.The investigation into the use of earth-abundant elements as electrode materials for lithium-ion batteries (LIBs) is becoming more urgent because of the high demand for electric vehicles and portable devices. Herein, a new green synthesis strategy, based on a facile solid-state reaction with the assistance of water droplets' vapor, was conducted to prepare Fe2(MoO4)3 nanosheets as anode materials for LIBs. The obtained sample possesses a two-dimensional stacked nanosheet construction with open gaps providing a much higher surface area compared to the bulk sample conventionally synthesized. The nanosheet sample delivers an ultrahigh reversible capacity (1983.6 mA h g-1) at a current density of 100 mA g-1 after 400 cycles, which could be related to the contribution of pseudocapacitance. The enhancement in cyclability and rated performance with an interesting increased capacity could be caused by the effect of electrochemical milling and the in situ formation of metallic particles in its lithium-ion storage mechanism.Inorganic photocatalyst-enzyme systems are a prominent platform for the photoreduction of CO2 to value-added chemicals and fuels. However, poor electron transfer kinetics and enzyme deactivation by reactive oxygen species in the photoexcitation process severely limit catalytic efficiency. In chloroplast, enzymatic CO2 reduction and photoexcitation are compartmentalized by the thylakoid membrane, which protects enzymes from photodamage, while the tightly integrated photosystem facilitates electron transfer, promoting photocatalysis. By mimicking this strategy, we constructed a novel functionally compartmental inorganic photocatalyst-enzyme system for CO2 reduction to formate. To accomplish efficient electron transfer, we first synthesized an integrated artificial photosystem by conjugation of the cocatalyst (a Rh complex) onto thiophene-modified C3N4 (TPE-C3N4), demonstrating an NADH regeneration rate of 9.33 μM·min-1, 2.33 times higher than that of a homogeneous counterpart. The enhanced NADH regeneration activity was caused by the tightly conjugated structure of the artificial photosystem, enabling rapid electron transfer from TPE-C3N4 to the Rh complex.

Autoři článku: Dickersonbak7269 (Dolan Lausen)