Kringnorton1704

Z Iurium Wiki

Verze z 22. 10. 2024, 14:45, kterou vytvořil Kringnorton1704 (diskuse | příspěvky) (Založena nová stránka s textem „The experimental results show that PLANet performs better than traditional and deep learning-based segmentation methods on geometrical and clinical metrics…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The experimental results show that PLANet performs better than traditional and deep learning-based segmentation methods on geometrical and clinical metrics. Moreover, PLANet can complete the segmentation of heart structures in 2D echocardiography in real time, indicating a potential to assist cardiologists accurately and efficiently.Machine learning models for radiology benefit from large-scale data sets with high quality labels for abnormalities. We curated and analyzed a chest computed tomography (CT) data set of 36,316 volumes from 19,993 unique patients. This is the largest multiply-annotated volumetric medical imaging data set reported. To annotate this data set, we developed a rule-based method for automatically extracting abnormality labels from free-text radiology reports with an average F-score of 0.976 (min 0.941, max 1.0). We also developed a model for multi-organ, multi-disease classification of chest CT volumes that uses a deep convolutional neural network (CNN). This model reached a classification performance of AUROC >0.90 for 18 abnormalities, with an average AUROC of 0.773 for all 83 abnormalities, demonstrating the feasibility of learning from unfiltered whole volume CT data. We show that training on more labels improves performance significantly for a subset of 9 labels - nodule, opacity, atelectasis, pleural effusion, consolidation, mass, pericardial effusion, cardiomegaly, and pneumothorax - the model's average AUROC increased by 10% when the number of training labels was increased from 9 to all 83. All code for volume preprocessing, automated label extraction, and the volume abnormality prediction model is publicly available. The 36,316 CT volumes and labels will also be made publicly available pending institutional approval.The recent global outbreak and spread of coronavirus disease (COVID-19) makes it an imperative to develop accurate and efficient diagnostic tools for the disease as medical resources are getting increasingly constrained. Artificial intelligence (AI)-aided tools have exhibited desirable potential; for example, chest computed tomography (CT) has been demonstrated to play a major role in the diagnosis and evaluation of COVID-19. However, developing a CT-based AI diagnostic system for the disease detection has faced considerable challenges, which is mainly due to the lack of adequate manually-delineated samples for training, as well as the requirement of sufficient sensitivity to subtle lesions in the early infection stages. In this study, we developed a dual-branch combination network (DCN) for COVID-19 diagnosis that can simultaneously achieve individual-level classification and lesion segmentation. To focus the classification branch more intensively on the lesion areas, a novel lesion attention module was developed to integrate the intermediate segmentation results. Furthermore, to manage the potential influence of different imaging parameters from individual facilities, a slice probability mapping method was proposed to learn the transformation from slice-level to individual-level classification. We conducted experiments on a large dataset of 1202 subjects from ten institutes in China. The results demonstrated that 1) the proposed DCN attained a classification accuracy of 96.74% on the internal dataset and 92.87% on the external validation dataset, thereby outperforming other models; 2) DCN obtained comparable performance with fewer samples and exhibited higher sensitivity, especially in subtle lesion detection; and 3) DCN provided good interpretability on the loci of infection compared to other deep models due to its classification guided by high-level semantic information. An online CT-based diagnostic platform for COVID-19 derived from our proposed framework is now available.Accurate ventricular volume measurements are the primary indicators of normal/abnor- mal cardiac function and are dependent on the Cardiac Magnetic Resonance (CMR) volumes being complete. However, missing or unusable slices owing to the presence of image artefacts such as respiratory or motion ghosting, aliasing, ringing and signal loss in CMR sequences, significantly hinder accuracy of anatomical and functional cardiac quantification, and recovering from those is insufficiently addressed in population imaging. In this work, we propose a new robust approach, coined Image Imputation Generative Adversarial Network (I2-GAN), to learn key features of cardiac short axis (SAX) slices near missing information, and use them as conditional variables to infer missing slices in the query volumes. In I2-GAN, the slices are first mapped to latent vectors with position features through a regression net. The latent vector corresponding to the desired position is then projected onto the slice manifold, conditioned on intensity features through a generator net. The generator comprises residual blocks with normalisation layers that are modulated with auxiliary slice information, enabling propagation of fine details through the network. In addition, a multi-scale discriminator was implemented, along with a discriminator-based feature matching loss, to further enhance performance and encourage the synthesis of visually realistic slices. Daclatasvir Experimental results show that our method achieves significant improvements over the state-of-the-art, in missing slice imputation for CMR, with an average SSIM of 0.872. Linear regression analysis yields good agreement between reference and imputed CMR images for all cardiac measurements, with correlation coefficients of 0.991 for left ventricular volume, 0.977 for left ventricular mass and 0.961 for right ventricular volume.Sheep is usually a monovular animal; superovulation technology is used to increase the number of offspring per individual and shorten generation intervals. To date, mature FSH superstimulatory treatments have been successfully used in sheep breeding, but much remains unknown about genes, pathways, and biological functions involved in follicular development. Therefore, in this study, we performed transcriptome profiling of small follicles (SFs; 2-2.5 mm), medium follicles (MFs; 3.5-4.5 mm), and large follicles (LFs; > 6 mm) in Mongolian ewes after FSH superstimulation. Furthermore, we identified differentially expressed genes and performed Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology enrichment analyses in 3 separate pairwise comparisons. We found that ovarian steroidogenesis was significantly enriched in the SFs versus MFs analysis; the associated genes, cytochrome P450 family 19 (CYP19) and Hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid delta-isomerase 1 (HSD3B1), were significantly upregulated.

Autoři článku: Kringnorton1704 (Galbraith Pape)