Donaldsonsawyer9288

Z Iurium Wiki

Verze z 22. 10. 2024, 13:28, kterou vytvořil Donaldsonsawyer9288 (diskuse | příspěvky) (Založena nová stránka s textem „An intelligent low-field proton NMR as a time domain (TD) NMR relaxation sensor technology for the monitoring of T2 (spin-spin) and T1 (spin-lattice) energ…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

An intelligent low-field proton NMR as a time domain (TD) NMR relaxation sensor technology for the monitoring of T2 (spin-spin) and T1 (spin-lattice) energy relaxation times is reviewed to support decision-making by producers, retailers and consumers in regard to food safety and nutritional value during production, shipping, storage and consumption.Hollow carbon nitride nanosphere (HCNS) was synthesized via the hard template method to improve the fluorescence characteristics, drug delivery ability, and photocatalytic activity. Blue fluorescent HCNS was utilized as a quenching agent and an internal reference to combine with Cy5-labelled aptamer (Cy5-Apt), resulting in an off-on fluorescence aptasensing method for the detection of Salmonella typhimurium (S. typhimurium). Under optimum conditions, this fluorescence assay presented a linear range from 30 to 3 × 104 CFU mL-1 with a detection limit of 13 CFU mL-1. In addition, HCNS was also used as a drug carrier to load chloramphenicol (Cap) molecules. The Cap-loading amount of HCNS could reach 550 μg mg-1 within 24 h, whereas the corresponding Cap-release amount is 302.5 μg mg-1 under acidic and irradiation conditions. The integration of photocatalyst with antibiotic could endow HCNS-Cap with better disinfection performance. The bactericidal efficiency of HCNS-Cap (95.0%) against S. typhimurium within 12 h was better than those of HCNS (85.1%) and Cap (72.9%). In addition, selective disinfection of S. typhimurium was further realized by decorating aptamer. Within 4 h, almost all S. Typhimurium were inactivated by HCNS-Cap-Apt, whereas only 13.3% and 48.2% of Staphylococcus aureus and Escherichia coli cells were killed, respectively. Therefore, HCNS is a promising bio-platform for aptamer-based fluorescence detection and selective disinfection of S. typhimurium.The solid contact ion-selective electrode (ISE) is a promising skin-interfaced monitoring system for sweat ions. Despite a growing number of on-body usages of ISE with fancy new materials and device fabrications, there are very few reports attempting to validate ISE results with a gold standard technique. For this purpose, this work uses inductively coupled plasma-optical emission spectrometry (ICP-OES) as a reference technique to conduct a direct evaluation of the sweat sodium and potassium ion levels obtained by ISE in an off-body approach. Eight healthy male subjects were recruited to collect exercise-induced sweat. It was found that sweat sodium and potassium ions present a rather wide concentration range. The sweat sodium concentration did not vary greatly in an exercise period of half an hour, while the sweat potassium concentration typically decreased with exercise. Mineral drink intake had no clear impact on the sweat sodium level, but increased the sweat potassium level. A paired t-test and mean absolute relative difference (MARD) analysis, a method typically used for evaluating the performance of glucometers, was employed to compare the results of ISE and ICP-OES. The statistical analysis validated the feasibility of ISE for measuring sweat ions, although better accuracy is required. Our data suggests that overweight subjects are likely to possess a higher sweat sodium level.Digital quantification based on counting of individual molecules is a promising approach for different biomedical applications due to its enhanced sensitivity. Here, we present a method for the digital detection of nucleic acids (DNA and RNA) on silicon microchips based on the counting of gold nanoparticles (GNPs) in DNA duplexes by scanning electron microscopy (SEM). Biotin-labeled DNA is hybridized with capture oligonucleotide probes immobilized on the microchips. Then biotin is revealed by a streptavidin-GNP conjugate followed by the detection of GNPs. Sharp images of each nanoparticle allow the visualization of hybridization results on a single-molecule level. The technique was shown to provide highly sensitive quantification of both short oligonucleotide and long double-strand DNA sequences up to 800 bp. The lowest limit of detection of 0.04 pM was determined for short 19-mer oligonucleotide. The method's applicability was demonstrated for the multiplex quantification of several β-lactamase genes responsible for the development of bacterial resistance against β-lactam antibiotics. Determination of nucleic acids is effective for both specific DNA in lysates and mRNA in transcripts. The method is also characterized by high selectivity for single-nucleotide polymorphism discrimination. The proposed principle of digital quantification is a perspective for studying the mechanisms of bacterial antibiotic resistance and bacterial response to drugs.Due to its physical, chemical, and structural properties, oakwood is widely used in the production of barrels for wine ageing. When in contact with the wine, oak continuously releases aromatic compounds such as lignin, tannin, and cellulose to the liquid. Due to the release process, oak loses its characteristic aromatic compounds in time; hence, the flavour that it gives to the enclosed wine decreases for repeated wine refills and a barrel replacement is required. Currently, the estimation of the maximum number of refills is empirical and its underestimation or overestimation can impose unnecessary costs and impair the quality of the wine. selleck inhibitor Therefore, there is a clear need to quantify the presence of the aforementioned aromatic compounds in an oak barrel prior to a refill. This work constitutes a study to examine noninvasive optical biosensing techniques for the characterization of an oak barrel used in wine ageing, towards the development of a model to unveil its lifespan without inducing structural damage. Srom the barrels with >99% accuracy. These preliminary results pave a way for the application of cost-effective and non-invasive biosensing techniques based on reflectance spectroscopy for oak barrels assessment.In SERS analysis, the specificity of molecular fingerprints is combined with potential single-molecule sensitivity so that is an attractive tool to detect molecules in trace amounts. Although several substrates have been widely used from early on, there are still some problems such as the difficulties to bind some molecules to the substrate. With the development of nanotechnology, an increasing interest has been focused on plasmonic metal nanoparticles hybridized with (2D) nanomaterials due to their unique properties. More frequently, the excellent properties of the hybrids compounds have been used to improve the drawbacks of the SERS platforms in order to create a system with outstanding properties. In this review, the physics and working principles of SERS will be provided along with the properties of differently shaped metal nanoparticles. After that, an overview on how the hybrid compounds can be engineered to obtain the SERS platform with unique properties will be given.Benzimidazole-based compound 2-(p-tolyl)-1H-benzo[d]imidazole (3) and its derivative probe A-B have been synthesized for the highly selective detection and quantification of Cys in human serum. The photophysical properties of A-B and compound 3 were evaluated by UV-vis absorption and fluorescence spectroscopy. A-B showed high selectivity and sensitivity for Cys among tested analytes, including amino acids, anions, and cations. A-B selectively reacts with Cys and results in compound 3 with fluorescence turn-on effect. A-B did not show any interference from the components in the serum matrix for Cys detection in the human serum sample. A-B detects Cys in serum samples with 2.3-5.4-fold better LOD than reported methods. The detection limit of 86 nM and 43 nM in HEPES buffer using UV-visible and fluorescence spectroscopy, respectively, makes A-B an excellent chemosensor for Cys detection.Lung cancer has been studied for decades because of its high morbidity and high mortality. Traditional methods involving bronchoscopy and needle biopsy are invasive and expensive, which makes patients suffer more risks and costs. Various noninvasive lung cancer markers, such as medical imaging indices, volatile organic compounds (VOCs), and exhaled breath condensates (EBCs), have been discovered for application in screening, diagnosis, and prognosis. However, the detection of markers still relies on bulky and professional instruments, which are limited to training personnel or laboratories. This seriously hinders population screening for early diagnosis of lung cancer. Advanced smartphones integrated with powerful applications can provide easy operation and real-time monitoring for healthcare, which demonstrates tremendous application scenarios in the biomedical analysis region from medical institutions or laboratories to personalized medicine. In this review, we propose an overview of lung-cancer-related noninvasive markers from exhaled breath, focusing on the novel development of smartphone-based platforms for the detection of these biomarkers. Lastly, we discuss the current limitations and potential solutions.Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice.Glycated hemoglobin (HbA1c) is the gold standard for measuring glucose levels in the diagnosis of diabetes due to the excellent stability and reliability of this biomarker. HbA1c is a stable glycated protein formed by the reaction of glucose with hemoglobin (Hb) in red blood cells, which reflects average glucose levels over a period of two to three months without suffering from the disturbance of the outside environment. A number of simple, high-efficiency, and sensitive electrochemical sensors have been developed for the detection of HbA1c. This review aims to highlight current methods and trends in electrochemistry for HbA1c monitoring. The target analytes of electrochemical HbA1c sensors are usually HbA1c or fructosyl valine/fructosyl valine histidine (FV/FVH, the hydrolyzed product of HbA1c). When HbA1c is the target analyte, a sensor works to selectively bind to specific HbA1c regions and then determines the concentration of HbA1c through the quantitative transformation of weak electrical signals such as current, potential, and impedance. When FV/FVH is the target analyte, a sensor is used to indirectly determine HbA1c by detecting FV/FVH when it is hydrolyzed by fructosyl amino acid oxidase (FAO), fructosyl peptide oxidase (FPOX), or a molecularly imprinted catalyst (MIC). Then, a current proportional to the concentration of HbA1c can be produced. In this paper, we review a variety of representative electrochemical HbA1c sensors developed in recent years and elaborate on their operational principles, performance, and promising future clinical applications.

Autoři článku: Donaldsonsawyer9288 (Knox Goldberg)