Hannaoverby8398

Z Iurium Wiki

Verze z 22. 10. 2024, 13:26, kterou vytvořil Hannaoverby8398 (diskuse | příspěvky) (Založena nová stránka s textem „β-Diketiminate ligands featuring backbone NMe2 groups have been exploited to access a series of two-coordinate cations of the type [(N-nacnac)E]+ (E = Si,…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

β-Diketiminate ligands featuring backbone NMe2 groups have been exploited to access a series of two-coordinate cations of the type [(N-nacnac)E]+ (E = Si, Ge, Sn), whose reactivity towards N-H bonds has been investigated. While the heavier group 14 systems react via simple adduct formation, N-H oxidative addition occurs for E = Si consistent with differences in EII/EIV redox potentials. The structurally characterized Ge/Sn adducts can be viewed as models for the corresponding (transient) Si systems [(N-nacnac)Si·(NH2R)]+ (R = H, tBu) - which are potential intermediates in the formation of [(N-nacnac)Si(H)(NHR)]+ via a proton-shuttling mechanism.The synthesis of vinyl sulfones via silver-promoted cross-coupling of vinyl bromides with sulfonyl hydrazides was realized. Water was used as the sole solvent. Multisubstituted vinyl sulfones were easily prepared with excellent alkyl group tolerance. A mechanism involving nucleophilic attack of a sulfinate anion was proposed.The design of multiple stimuli-responsive, stable polymeric drug carriers is key for efficient drug release against solid tumors. Herein, core-crosslinked micelles were readily prepared from a pair of redox/pH-sensitive clickable copolymers. The two copolymers comprised the same poly(ethylene glycol) (PEG)-poly(ε-benzyloxycarbonyl-l-lysine) (PZLL) block but with either disulfide-linked azadibenzocyclooctyne (DBCO) or azide (AZ) group-tagged branched polyethylenimine (BPEI, 1.8 kDa). The data showed that an equivalent of the two copolymers could self-assemble into nanosized micelles with the crosslinked core via the DBCO-AZ click chemistry. The click-crosslinked micelles showed excellent size stability under multiple dilutions but destabilization in an acidic or reductive environment. Besides, they could load doxorubicin (DOX), an anticancer drug, and mediate slow drug release in a neutral environment but sufficient drug unloading under acidic plus reductive conditions. In vitro, DOX-loaded crosslinked micelles led to higher DOX accumulation in the cellular nucleus in comparison with non-crosslinked micelles from the PEG-PZLL-BPEI copolymer (PP), thus causing more marked cytotoxicity in SKOV-3 cells. In vivo, DOX-loaded crosslinked micelles caused significant growth inhibition of SKOV-3 tumors xenografted in BALB/c nude mice, and showed superior anticancer efficacy to non-crosslinked PP micelles. Chemotherapy with core-crosslinked micelles had no adverse side effects on the health (serum levels and body weight) of the mice. This study highlights the design of clickable block copolymers to easily construct core-crosslinked and multiple stimuli-responsive micelles for enhanced anticancer therapy.Two azido-bridged homospin Fe(ii)/Co(ii) coordination polymers [Fe2(Bzp)2(N3)4]n (1) and [Co4(Bzp)4(N3)8·(MeOH)2]n (2) (bzp = 2-benzoylpyridine) are prepared, which consist of one-dimensional neutral chains with pure EO-azido (μ2-1,1-N3) bridges. Magnetically, both 1 and 2 exhibit considerable intrachain ferromagnetic interactions which benefit from the EO-azido bridging mode, leading to typical single-chain magnet (SCM) behavior under both the "infinite-size" and "finite-size" regime and pronounced hysteresis loops. As far as the bridging network is concerned, complex 1 represents not only a rare example of homospin Fe(ii)-based SCMs but also the first Fe(ii) chain compound with pure EO-azido bridges.For the first time, electrochemiluminescence (ECL) emission was observed from black phosphorus quantum dots (BPQDs) in the presence of K2S2O8 as the co-reactant. The potential application of BPQDs ECL in analytical chemistry was also demonstrated using Cu2+ as an example.Carbon-based nanomaterials (CNMs) have attracted great attention in biomedical applications such as cancer imaging and therapy. CNMs, which are currently used in a wide range of applications, suffer from drawbacks of toxicity and low biocompatibility. Either noncovalent or covalent functionalization of CNMs with hydrophilic and biocompatible polymers which help to block hydrophobic interactivity between CNMs and cells can greatly increase their biocompatibility by eliminating their probable toxicity towards living organisms. In this report, we present a comparison of both noncovalent and covalent functionalization approaches in order to introduce a biocompatible glycoblock copolymer onto multi-walled carbon nanotubes (CNTs) in order to enhance their potential in therapies. An anticancer drug (doxorubicin, Dox) was conjugated with two different end functionalized poly(1-O-methacryloyl-β-d-fructopyranose-b-(2-methacryloxyethoxy))benzaldehyde glycoblock copolymers, which were synthesized via reversible addition-tor mediated breast cancer therapy.Hybrid organic-inorganic perovskite (HOIP) materials have caught significant attention in photovoltaics and photoelectronics for their outstanding photovoltaic properties. However, their instability to various environment, such as illumination, temperature, moisture and oxygen, hinders their way to commercialization. To figure out the interaction mechanism between H2O and CH3NH3PbI3 (MAPbI3), extensive theoretical studies have been carried out; however, the experimental results are insufficient and inconsistent. Here, we systematically investigate and compare the influence of H2O on MAPbI3 perovskite films with or without DMF) post-annealing in dark or light condition. The interaction between H2O and the surface of pristine MAPbI3 leads to the fusion of grain boundaries thus grain growth into micron level in short-time moisture exposure. While the penetration of H2O into MAPbI3 results in swelled crystalline whisker, cracking into smaller grains in long-time exposure upon the release of H2O. However, no degradation occurs in dark condition. buy Fumarate hydratase-IN-1 As the DMF post-annealing treatment changes the surface states of MAPbI3, the interactions between the external H2O and internal MAPbI3 significantly varies from the pristine MAPbI3. Three different surface states with different topographies have influence on the interaction process and mechanism with H2O, leading to different decomposition rates, the striped surface that is the most rough among the three and experiencing the minimum change in surface potential with exposure to 80% humidity decomposes into PbI2 fastest. However, the addition of light will once again affect the aforementioned process. It is found that even ambient light could severely speed up the moisture-induced decomposition of MAPbI3, while the N,N-dimethylformamide (DMF) post-annealing treatment significantly improves the stability of MAPbI3 films upon exposure to humidity and illumination, benefiting from the MAI-deficient thus H2O resistant surface.In order to account for diffusio-osmosis, Derjaguin proposed long ago that there is an excess pressure confined within a layer of typically a few nanometers in the vicinity of a solid surface immersed in a liquid and resulting from the interaction between the liquid and the surface. In the presence of a composition gradient in the liquid a confined pressure gradient parallel to the surface is therefore responsible for the diffusio-osmotic flow. This picture appears in contradiction with the contact theorem of colloidal science according to which such excess pressure does not exist. We propose a theoretical description for calculating hydrodynamic flows in inhomogeneous liquids in the vicinity of solid interfaces which is consistent with the contact theorem. This approach is based on a Gibbs free energy and a virtual work principle for calculating the driving forces in the liquid due to inhomogeneous composition along a capillary and to the interaction with the solid interfaces. Our approach allows us to show that the physics at play is the same in wetting or in diffusio-osmosis experiments, as one can go continuously from the latter to the former by making composition gradients sharper. We obtain an explicit expression for the diffusio-osmotic mobility which depends on the Gibbs free energy density in the vicinity of the interface and its dependance on the solute concentration in the liquid beyond the interfacial region, and which is inversely proportional to the liquid viscosity.A novel type of electrochemical sensor for detection of phosphate in water environment was developed by combining the interfacial barrier of p-n junction with the adsorption of phosphate. The electrochemical response was produced by the induced change of the barrier height, which was only caused by the specific adsorption of phosphate. Two linear concentration ranges (0-0.045 mg L-1 and 0.045-0.090 mg L-1) with two sensitivities (4.98 μA (μg L-1)-1 and 1.28 μA (μg L-1)-1) were found. The good performance made the sensor meet the requirements of the World Health Organization for drinking water (1 mg L-1 of phosphate). It is an approach to develop electrochemical sensors by employing the interfacial barrier effects on electrochemistry.Rapid progress in high-throughput glycomics analysis enables the researchers to conduct large sample studies. Typically, the between-subject differences in total abundance of raw glycomics data are very large, and it is necessary to reduce the differences, making measurements comparable across samples. Essentially there are two ways to approach this issue row-wise and column-wise normalization. In glycomics, the differences per subject are usually forced to be exactly zero, by scaling each sample having the sum of all glycan intensities equal to 100%. This total area (row-wise) normalization (TA) results in so-called compositional data, rendering many standard multivariate statistical methods inappropriate or inapplicable. Ignoring the compositional nature of the data, moreover, may lead to spurious results. Alternatively, a log-transformation to the raw data can be performed prior to column-wise normalization and implementing standard statistical tools. Until now, there is no clear consensus on the appropriate normalization method applied to glycomics data. Nor is systematic investigation of impact of TA on downstream analysis available to justify the choice of TA. Our motivation lies in efficient variable selection to identify glycan biomarkers with regard to accurate prediction as well as interpretability of the model chosen. Via extensive simulations we investigate how different normalization methods affect the performance of variable selection, and compare their performance. We also address the effect of various types of measurement error in glycans additive, multiplicative and two-component error. We show that when sample-wise differences are not large row-wise normalization (like TA) can have deleterious effects on variable selection and prediction.The thienoguanine nucleobase (thGb) is an isomorphic fluorescent analogue of guanine. In aqueous buffer at neutral pH, thGb exists as a mixture of two ground-state H1 and H3 keto-amino tautomers with distinct absorption and emission spectra and high quantum yield. In this work, we performed the first systematic photophysical characterization of thGb as a function of pH (2 to 12). Steady-state and time-resolved fluorescence spectroscopies, supplemented with theoretical calculations, enabled us to identify three additional thGb forms, resulting from pH-dependent ground-state and excited-state reactions. Moreover, a thorough analysis allowed us to retrieve their individual absorption and emission spectra as well as the equilibrium constants which govern their interconversion. From these data, the complete photoluminescence pathway of thGb in aqueous solution and its dependence as a function of pH was deduced. As the identified forms differ by their spectra and fluorescence lifetime, thGb could be used as a probe for sensing local pH changes under acidic conditions.

Autoři článku: Hannaoverby8398 (Neumann McHugh)