Catesdrachmann9125

Z Iurium Wiki

Verze z 22. 10. 2024, 13:22, kterou vytvořil Catesdrachmann9125 (diskuse | příspěvky) (Založena nová stránka s textem „Resveratrol improved hyperglycemia and insulin resistance along with a non-significant reduction in the expression of SNARE proteins. Conclusion Increased…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Resveratrol improved hyperglycemia and insulin resistance along with a non-significant reduction in the expression of SNARE proteins. Conclusion Increased expression of SNARE proteins was possibly a compensatory mechanism in response to insulin resistance in the skeletal muscles of diabetic rats. Resveratrol non-significantly reduced the expression of SNARE proteins by enhancing insulin sensitivity, where this effect was dose-dependent. Thus, higher doses of resveratrol and longer intervention periods could probably be more effective. Another molecular mechanism of the anti-diabetic properties of resveratrol was identified with an effect on the expression of SNARE proteins.Objectives Hepatic ischemia/reperfusion injury (IRI) is one of the major causes of hepatic failure during liver transplantation, trauma, and infections. The present study investigated the protective effect of intra-portal administration of 2-methoxycinnamaldehyde (2-MCA) on hepatic IRI in rats. Materials and Methods Twenty-four rats were equally divided into four groups; 1) sham group, (no IRI or transfusion), 2) Hepatic IRI (60 min ischemia + 120 min reperfusion, 3) Hepatic IRI+ NS (IRI + normal saline), 4) Hepatic IRI+2-MCA, (IRI + 2-MCA). In groups 3 and 4, 1 ml/kg normal saline and 2-MCA were administered slowly into the vein of the left lateral and median lobes of the liver 10 min before induction of hepatic reperfusion (upper the site of clumping), respectively. The harvest time points were at 2 hours post-reperfusion in all groups. Results Histologically, cell death, degenerative changes, sinusoidal dilatation, congestion, hemorrhage, and infiltration of inflammatory cells were observed in IRI group, while these pathological changes were attenuated in the 2-MCA administrated group. The level of alanine transaminase, aspartate transaminase, tumor necrosis factor- α and interleukin-6 in serum and hepatic malondialdehyde were significantly increased by IRI, and 2-MCA administration reduced all these markers. In addition, caspase-3 and nuclear factor κB (NF-κB) expression were investigated immunohistochemically. Administration of 2-MCA considerably decreased caspase-3 positive cells and NF-κB activity in comparison with IRI group. Conclusion As a conclusion, in situ administration of 2-MCA protects against hepatic IRI via anti-inflammatory, and anti-apoptotic properties.Objectives Varenicline is a selective partial agonist for the nicotinic acetylcholine receptor a4b2 subtype, which is widely used to treat smoking addiction. However, there is still no data about its potential toxic effects on tissues. In this study, we aimed to determine the varenicline-induced toxicity on reproductive and renal tissues in rats. Materials and Methods Rats were randomly divided into two groups control (n=10) and varenicline (n=24). Then, rats in each group were sub-divided equally as acute and chronic groups. The control rats were orally given distilled water only. Varenicline was administrated orally as follows 1st-3rd days 9 µg/kg/day, 4th-7th days 9 µg/kg twice daily, and 8th-90th days 18 µg/kg twice daily. The rats of acute and chronic groups were sacrificed on the 45th and 90th days, respectively. Some tissue markers related to oxidative stress were measured, and sperm characteristics were observed. Results In the acute group, varenicline led to a significant decrease in SOD activities in both kidney and testis tissues. In the chronic group, varenicline significantly increased MDA and MPO production, and reduced CAT and GPx levels in the kidneys and testes. Also, SOD and GSH levels significantly decreased in the testes. Moreover, sperm characteristics were negatively affected; histopathological deformation was observed in the testes and kidneys in all groups. Conclusion This study showed that varenicline could detrimentally affect the kidneys and testes in both acute and chronic term usage. Further studies will provide more insights into the molecular dynamics of this damage.Objectives Plasmid-mediated quinolone resistance (PMQR) determinants and integrons have a considerable contribution to bacterial drug resistance in Gram-negative pathogens. We studied the prevalence of PMQR genes and integron carriage in multidrug-resistant community isolates of Klebsiella spp. Materials and Methods Two hundred and fifty Klebsiella spp. isolates were collected from outpatient specimens between August 2015 and October 2017 in Yazd central Laboratory, Iran. Antibiotic susceptibility was determined against 17 antibiotics and minimum inhibitory concentration (MIC) of ciprofloxacin was measured by E-test. Polymerase chain reaction (PCR) was employed for detection of qnrA, qnrB, qnrS, aac(6')-Ib-cr, oqxAB and qepA genes. Results Disc diffusion results showed that 17 isolates (6.8%) were multidrug resistant (MDR), two of which were Klebsiella oxytoca and 15 were Klebsiella pneumoniae. MIC measurements revealed 11 ciprofloxacin-resistant isolates (including the two K. SU6656 oxytoca), three intermediately-resistant and three ciprofloxacin-susceptible isolates. All ciprofloxacin-resistant and intermediately-resistant isolates carried at least one and up to four PMQR genes. The most prevalent PMQR gene was oqxAB (93.75%) followed by aac(6')-ib-cr (50.0%), qnrB (25.0%) and qnrS (18.75%) but qnrA and qepA were not detected. Class 1 integron was observed in 14 (82.3%) isolates including nine ciprofloxacin-resistant, two intermediately-resistant, and three susceptible isolates. Class 2 and 3 integrons were not observed. Conclusion Presence of MDR, multiple PMQR determinants as well as class 1 integron in community isolates of Klebsiella spp. can be an important source of transmission of these opportunistic pathogens.Objectives One of the common heterogeneous reproductive disorders in women of childbearing age is polycystic ovary syndrome (PCOS). It is characterized by lack of fertility due to anovulatory cycles, hyperandrogenemia, polycystic ovaries, hyperinsulinemia, and obesity. Both reproductive anomalies and metabolic disorders are involved in PCOS pathology. Although the role of increased levels of androgens in initiation of PCOS is almost proven, mechanisms of PCOS pathophysiology are not clear. Here we discuss roles of altered metabolic conditions, obesity, and chronic inflammation in PCOS pathophysiology. Materials and Methods In this review, we attempted to identify genes related to obesity and chronic inflammation aspects of PCOS and their physiological functions to explain the pathways that are regulated by these genes and can be a prominent function in PCOS predisposition. For this purpose, published articles and reviews dealing with genetic evaluation of PCOS in women in peer-reviewed journals in PubMed and Google Scholar databases were included in this review. Results Obesity and chronic inflammation are not prominent diagnostic features of PCOS, but they play an important role in exacerbating metabolic and hyperandrogenic states. ADIPOQ, FTO TGFβ, and DENND1A as the main obesity- and chronic inflammation-related genes have roles in PCOS pathophysiology. Conclusion It seems that genes related to obesity pathology in genomic research association, are related to metabolic aspects and body mass index in PCOS patients. Genomes have roles in chronic inflammation, followed by obesity, in the pathogenesis of PCOS.This paper reviews the potential role of honey as a therapeutic antioxidant to reduce oxidative stress and improve cognitive ageing. All articles indexed to PubMed Central (PMC) were searched using the following key words honey, antioxidant, memory and ageing. Honey is a natural insect-derived product with therapeutic, medicinal and nutritional values. Antioxidant properties of honey quench biologically-circulating reactive oxygen species (ROS) and counter oxidative stress while restoring the cellular antioxidant defense system. Antioxidant properties of honey may complement its nootropic effects to reduce cognitive ageing.Background Trypanosomes are protozoan flagellates that cause human African trypanosomiasis (HAT) and African animal trypanosomiasis (AAT). HAT is caused by Trypanosoma brucei rhodesiense in East and Central Africa and T.b. gambiense in West Africa, whereas AAT is caused by a number of trypanosome species, including T. brucei brucei, T. evansi, T. vivax, T. congolense, T. godfreyi and T. simiae. The aim of this study was to establish if tsetse flies at Liwonde Wild Life Reserve (LWLR) are infected with these trypanosomes and thus pose a risk to both humans and animals within and surrounding the LWLR. Methods A total of 150 tsetse flies were caught. Of these, 82 remained alive after capture and were dissected such that the mid-gut could be examined microscopically for trypanosomes. DNA extractions were performed from both mid-guts and the 68 dead flies using a Qiagen Kit. Amplification techniques involved the Internal Transcriber Spacer 1 (ITS 1) conventional polymerase chain reaction (PCR) with primers designees HAT in both East and Central Africa. © 2019 The College of Medicine and the Medical Association of Malawi.[This corrects the article DOI 10.18632/oncotarget.27108.]. Copyright © 2020 Akinyemiju et al.[This corrects the article DOI 10.18632/oncotarget.4708.]. Copyright © 2020 Li et al.Melanoma continues to be a significant health concern worldwide despite recent improvements in treatment. Unlike many other prominent cancers, melanoma incidence in both men and women increased over the past decade in the U. S. and much of the developed world. The single greatest risk factor for melanoma is damage from ultraviolet radiation associated with lifestyle. The lifestyle component suggests that although melanoma risk can be minimized with behavioral changes, vaccinating high-risk individuals against melanoma may be the most efficacious preventative method. Accordingly, using a highly attenuated, double-mutant L. monocytogenes strain expressing a tumor-associated antigen, we obtained significant protection against melanoma in a mouse model. The Listeria-based vaccine induced protection through antigen-specific CD8+ T-cells inducing both a protective primary and a memory T-cell response. Vaccinated animals were significantly protected from melanoma. When used in conjunction with checkpoint blockade treatment, the vaccine substantially reduced tumor size and number relative to animals receiving checkpoint blockade (CPB) alone. This study provides evidence that CPB treatment synergizes with a L. monocytogenes-based melanoma vaccine to enhance vaccine-mediated protection. Copyright © 2020 Gilley et al.The type I Melanoma Antigen Gene (MAGE) A3 is a functional target associated with survival and proliferation in multiple myeloma (MM). To investigate the mechanisms of these oncogenic functions, we performed gene expression profiling (GEP) of p53 wild-type human myeloma cell lines (HMCL) after MAGE-A knockdown, which identified a set of 201 differentially expressed genes (DEG) associated with apoptosis, DNA repair, and cell cycle regulation. MAGE knockdown increased protein levels of pro-apoptotic BIM and of the endogenous cyclin-dependent kinase (CDK) inhibitor p21Cip1. Depletion of MAGE-A in HMCL increased sensitivity to the alkylating agent melphalan but not to proteasome inhibition. High MAGEA3 was associated with the MYC and Cell Cycling clusters defined by a network model of GEP data from the CoMMpass database of newly diagnosed, untreated MM patients. Comparative analysis of CoMMpass subjects based on high or low MAGEA3 expression revealed a set of 6748 DEG that also had significant functional associations with cell cycle and DNA replication pathways, similar to that observed in HMCL.

Autoři článku: Catesdrachmann9125 (Ashworth Leth)