Mcguiremccaffrey4813

Z Iurium Wiki

Verze z 22. 10. 2024, 04:38, kterou vytvořil Mcguiremccaffrey4813 (diskuse | příspěvky) (Založena nová stránka s textem „Halloysite nanotubes (HNTs) represent a versatile core structure for the design of functional nanosystems of biomedical interest. However, the development…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Halloysite nanotubes (HNTs) represent a versatile core structure for the design of functional nanosystems of biomedical interest. However, the development of selective methodologies for the site-controlled functionalization of the nanotubes at specific sites is not an easy task. This study aims to accomplish a procedure for the site-selective/specific, "pin-point", functionalization of HNTs with polydopamine (HNTs@PDA). This goal was achieved, at pH 6.5, by exploiting the basicity of ZnO nanoparticles anchored on the HNTs external surface (HNTs@ZnO) to induce a punctual polydopamine polymerization and coating. The morphology and the chemical composition of the nanomaterial was demonstrated by several techniques. Turbidimetric analysis showed that PDA coating affected the aqueous stability of HNTs@PDA compared to both HNTs@ZnO and HNTs. Notably, hyperthermia studies revealed that the nanomaterial induced a local thermic rise, up to 50 °C, under near-infrared (NIR) irradiation. p-Hydroxy-cinnamic Acid research buy Furthermore, secondary functionalization of HNTs@PDA by selective grafting of biotin onto the PDA coating followed by avidin binding was also accomplished.Designing efficient ternary nanostructures is a feasible approach for energy production under simulated solar irradiation. In this study, excellent photoexcited charge carrier separation and enhanced visible-light response were achieved with nitrogen-doped titania nanobelts (N-TNBs), whose 1D geometry facilitated the fabrication of a heterostructure with SnS2 on the surface of graphitic carbon nitride (g-C3N4). We established the design of SnS2@N-TNB and SnS2@N-TNB/g-C3N4 heterostructures by in situ hydrothermal and ultrasonication processes, and achieved commendable simulated solar light driven photocatalytic H2 generation. UV-vis diffuse reflectance spectroscopy analysis revealed a red shift in the absorption spectra of the SnS2@N-TNB and SnS2@N-TNB/g-C3N4 samples. The H2 produced via SnS2@N-TNB-10/g-C3N4 (6730.8 µmol/g/h) was 2.6 times higher than that produced by SnS2@N-TNB (2515.1 µmol/g/h), and 299 times higher than that produced by N-TNB (22.5 µmol/g/h). The improved photocatalytic H2 production was attributed to the maximum interface contact between SnS2@N-TNB and g-C3N4, and to the improved visible-light absorption and effective charge-carrier separation. Therefore, the present study provides novel insights for combining the advantages of ternary materials to improve the conversion of solar energy to H2 fuel.A protein corona forms around nanoparticles when they are intravenously injected into the bloodstream. The composition of the protein corona dictates the interactions between nanoparticles and the biological systems thus their immune evasion, blood circulation, and biodistribution. Here, we report for the first time the impact of nanoparticle stiffness on protein corona formation using a unique emulsion core silica shell nanocapsules library with a wide range of mechanical properties over four magnitudes (700 kPa to 10 GPa). The nanocapsules with different stiffness showed distinct proteomic fingerprints. The protein corona of the stiffest nanocapsules contained the highest amount of complement protein (Complement C3) and immunoglobulin proteins, which contributed to their high macrophage uptake, confirming the important role of nanocapsules stiffness in controlling the protein corona formation thus their in vitro and in vivo behaviors.Efficient and durable non-precious catalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is pivotal for practical water electrolysis toward clean hydrogen fuel. Herein, a molybdenum oxide-FeCoCu alloy hybrid (MoOx-FeCoCu) catalyst was designed by polyoxometallate (POM) molecular cluster mediated solvothermal alcoholysis and ammonolysis of metal salts followed by pyrolytic reduction treatment. The HER efficiency is substantially enhanced by the ternary alloy component, which is more close to the benchmark Pt/C catalyst, and the HER catalytic stability is also superior to Pt/C catalyst. Moreover, the MoOx-FeCoCu demonstrates high catalytic efficiency and rather good durability for OER. Benefitted by the bifunctional catalytic behaviors for HER and OER, the symmetric water electrolyzer based on the MoOx-FeCoCu electrode requires a low driving voltage of 1.69 V to deliver a response current density of 10 mA cm-2, which is comparable to that based on the benchmark Pt/C HER cathode and RuO2 OER anode. The current work offers a feasible way to design efficient bifunctional catalyst for water electrolysis via POM mediated co-assembly and calcination treatment.Embedding two-dimension micro/nanocontainers containing corrosion inhibitors into organic coating is a well-established concept to impart the coating with enhanced barrier and self-healing feature. Herein, a versatile nanoemulsion assembly approach was used to synthesis nanocarriers combing mesoporous polydopamine nanoparticles (MPDA) with reduced graphene oxide (GO), which was employed to encapsulate corrosion inhibitors (benzotriazole, BTA) to improve the anticorrosion performance of waterborne epoxy coating. The BTA release profiles from synthesized GO with MPDA (PDAG) demonstrated the rapid pH-triggered activities to acidic corrosion environment. With the addition of BTA-loaded PDAG, the composited epoxy coatings presented self-repairing behavior and enhanced corrosion resistance during long-term immersion. The outstanding anticorrosion performance is attributed to dual-protection mechanism provided by BTA-loaded PDAG (1) MPDA endows GO with satisfactory interface compatibilities and thus provides impermeable barrier to delay the penetration process of corrosive electrolyte; (2) corrosion inhibitors including BTA and polydopamine form the adsorption layers on bare steel surface to resist continuous corrosion at metal/coating interface.Photoreduction of CO2 to useful ingredients remains a great challenge due to the high energy barrier of CO2 activation and poor product selectivity. Herein, Polyvinyl pyrrolidone (PVP) coordinated BiOBr was synthesized by a facile chemical precipitation method at room temperature. The CO2 photoreduction behaviors of PVP coordinated BiOBr were evaluated with H2O without sacrificial agent under the simulated sunlight. The evolution rates of CO and CH4 are 263.2 µmol g-1h-1 and 3.3 µmol g-1h-1, which are 8 times and 2 times higher than those of pure BiOBr respectively. Furthermore, the coordination of PVP on BiOBr surface enhances greatly the selectivity of product CO, which is close to 100%. Loading PVP onto BiOBr could not only induce and stabilize the oxygen vacancy, but also increase the charge density of BiOBr via the ligand to metal charge transfer (LMCT), which could be beneficial to the adsorption and activation of CO2 molecule. The photoreduction mechanism of CO2 for PVP coordinated BiOBr was proposed based on the improved charge density of BiOBr by the experimental results and Density functional theory (DFT) calculations. This finding provides a new pathway to boost the conversion efficiency and selectivity for the activation of CO2 photoreduction and new molecule insights into the role of PVP in photocatalysis.Human platelet 12-(S)-Lipoxygenase (12-LOX) is a fatty acid metabolizing oxygenase that plays an important role in platelet activation and cardiometabolic disease. ML355 is a specific 12-LOX inhibitor that has been shown to decrease thrombosis without prolonging hemostasis and protect human pancreatic islets from inflammatory injury. It has an amenable drug-like scaffold with nM potency and encouraging ADME and PK profiles, but its binding mode to the active site of 12-LOX remains unclear. In the current work, we combined computational modeling and experimental mutagenesis to propose a model in which ML355 conforms to the "U" shape of the 12-LOX active site, with the phenyl linker region wrapping around L407. The benzothiazole of ML355 extends into the bottom of the active site cavity, pointing towards residues A417 and V418. However, reducing the active site depth alone did not affect ML355 potency. In order to lower the potency of ML355, the cavity needed to be reduced in both length and width. In addition, H596 appears to position ML355 in the active site through an interaction with the 2-methoxy phenol moiety of ML355. Combined, this binding model suggested that the benzothiazole of ML355 could be enlarged. Therefore, a naphthyl-benzothiazole derivative of ML355, Lox12Slug001, was synthesized and shown to have 7.2-fold greater potency than ML355. This greater potency is proposed to be due to additional van der Waals interactions and pi-pi stacking with F414 and F352. Lox12Slug001 was also shown to be highly selective against 12-LOX relative to the other LOX isozymes and more importantly, it showed activity in rescuing human islets exposed to inflammatory cytokines with comparable potency to ML355. Further studies are currently being pursued to derivatize ML355 in order to optimize the additional space in the active site, while maintaining acceptable drug-like properties.Adsorbed protein films consist of essential building blocks of many biotechnological and biomedical devices. The electrostatic potential may significantly modulate the protein behaviour on surfaces, affecting their structure and biological activity. In this study, lysozyme was used to investigate the effects of applied electric potentials on adsorption and the protein structure. The pH and the surface charge determine the amount and secondary structure of adsorbed lysozyme on a gold surface. In-situ measurements using polarization modulation infrared reflection absorption spectroscopy indicated that the concentration of both the adsorbed anions and the lysozyme led to conformational changes in the protein film, which was demonstrated by a greater amount of aggregated β-sheets in films fabricated at net positive charges of the Au electrode (Eads > Epzc). The changes in secondary structure involved two parallel processes. One comprised changes in the hydration/hydrogen-bond network at helices, leading to diverse helical structures α-, 310- and/or π-helices. In the second process β-turns, β-sheets, and random coils displayed an ability to form aggregated β-sheet structures. The study illuminates the understanding of electrical potential-dependent changes involved in the protein misfolding process.Carcinoembryonic antigen (CEA) is considered as a disease biomarker, which is related to various cancers and tumors in the human bodies. Sensitive detection of CEA is significant for clinical diagnosis and treatment. Herein, we proposed an electrochemical aptasensor for CEA detection based on the amplification driven by polydopamine functional graphene and Pd-Pt nanodendrites (PDA@Gr/Pd-PtNDs), conjugated hemin/G-quadruplex (hemin/G4), which possess mimicking peroxidases activity. Firstly, PDA@Gr was modified on the electrode surface for fixing CEA aptamer 1 (Apt1). Then, PDA@Gr/Pd-PtNDs with large surface area served as matrix for immobilization of hemin/G4 to obtain the secondary aptamer. In virtue of the sandwich-type specific reaction between CEA and the corresponding aptamers, the second aptamer was captured on the sensing interface, which can catalyze the oxidation of signal probe hydroquinone (HQ) with H2O2 and amplify current signal. Furthermore, the electrochemical signals of HQ were proportional with CEA concentrations.

Autoři článku: Mcguiremccaffrey4813 (Hester Ellegaard)