Hvidbergle9180

Z Iurium Wiki

Verze z 22. 10. 2024, 04:28, kterou vytvořil Hvidbergle9180 (diskuse | příspěvky) (Založena nová stránka s textem „These findings increase our understanding of the toxicological effects of herbicides in unexpected environments.Phthalates (PAEs) are of wide concern becau…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

These findings increase our understanding of the toxicological effects of herbicides in unexpected environments.Phthalates (PAEs) are of wide concern because they are commonly used in various plastic products as plasticizers, and can found their way into the environment. However, their interaction with the environment and their toxicity in aquatic animals is still a matter of intense debate. In this review on PAEs in aquatic environments (lakes, rivers and seas), it is found that there is a large variety and abundance of PAEs in developing countries, and the total concentration of PAEs even exceeds 200 μg / L. The interaction between metabolic processes involved in the toxicity induced by various PAEs is summarized for the first time in the article. Exposure of PAEs can lead to activation of the detoxification system CYP450 and endocrine system receptors of aquatic animals, which in turn causes oxidative stress, metabolic disorders, endocrine disorders, and immunosuppression. Meanwhile, each system can activate / inhibit each other, causing genotoxicity and cell apoptosis, resulting in the growth and development of organisms being blocked. The mixed PAEs shows no cumulative toxicity changes to aquatic animals. For the combined pollution of other chemicals and PAEs, PAE can act as an agonist or antagonist, leading to combined toxicity in different directions. Phthalate monoesters (MPEs), the metabolites of PAEs, are also toxic to aquatic animals, however, the toxicity is weaker than the corresponding parent compounds. This review summarizes and analyzes the current ecotoxicological effects of PAEs on aquatic animals, and provides guidance for future research.Filter media have oftentimes been used in fixed-bed column tests to examine their removal efficiencies for various pollutants, such as nutrients in stormwater runoff. With limited data sets from column studies, a response surface method (RSM), such as the Box-Behnken Design (BBD), and machine learning methods, can be used to transition from discrete mode assessment to continuous mode optimization, from which the key ingredients of filter media can be better synergized. In this study, similarly to drug discovery via chemometrics, RSM is used to generate meta-models and identify the optimum ratio between clay and iron-filings contents in Iron-filings-based Green Environmental Media (IFGEM) for nutrient removal in stormwater treatment. To achieve the continuous mode optimization, artificial neural network (ANN), deep belief network (DBN), and extreme learning machine (ELM) were selected as machine learning models to compare with BBD to explore the limited column data sets and improve the data science. While separate RSM can help realize the removal efficiencies of total nitrogen (TN), total phosphorus (TP), and ammonia based on varying ratios of clay and iron-filings contents in IFGEM, heterogeneous and inconsistent response surfaces generated from the four learners or classifiers (ANN, ELM, DBN, and BBD) complicate the selection of the final optimal recipe. The power of higher order singular value decomposition (HOSVD) helps synergize the optimal clay and iron filings matrixes of IFGEM in the context of continuous mode optimization via ANN, ELM, DBN, and BBD. With the aid of HOSVD, the optimal recipe for a holistic nutrient removal of TN, TP, and ammonia was determined to be 5% clay, 10% iron filings, 10% tire crumb, and 75% sand.The realization of stable partial nitrification and advanced nitrogen removal are not acquired effectively in conventional pre-denitrification biological nitrogen removal processes treating domestic sewage. Herein, a novel anaerobic/aerobic/anoxic/aerobic (AOAO) continuous plug-flow reactor, characterized with double sludge reflux and a bypass of anaerobic mixed liquor conveyed to anoxic zone, was first constructed to realize stable partial nitrification in treating domestic sewage. The alternating anoxic/aerobic conditions and longer anoxic sludge retention time might be responsible for the partial nitrification. Nitrite accumulation ratio reached 89.3 ± 3.3% with the maximum activity ratio of AOB to NOB increasing from 0.72 to 8.17. A content total inorganic nitrogen (TIN) removal efficiency (93.7 ± 2.2%) and effluent TIN concentration (2.9 ± 0.9 mg N/L) were obtained after 238 days' operation. Specifically, nitrogen balance of the typical cycle showed that about 30.1% of TIN was removed through simultaneous partial nitrification and denitrification (SND) in aerobic zone and 48.2% by endogenous denitrification in anoxic zone. The AOAO process is an economic treatment for domestic sewage with aerobic hydraulic retention time (HRT) of 4 h.

Living closer to greenness were thought to benefit various health outcomes. We aimed to assess the association between residential greenness and mortality among patients undergoing multidrug resistant tuberculosis (MDR-TB) treatment.

We enrolled all local MDR-TB patients reported in Zhejiang, China from 2009 to 2017 and followed them throughout the treatment. We calculated the contemporaneous normalized difference vegetation index (NDVI) in the 250 and 500 m radius around patient's residence. Cox proportional hazards regression models with time-varying NDVI were used to assess the impact of greenness exposure on all-cause mortality during MDR-TB treatment, adjusting for potential individual and contextual covariates.

We ascertained 1,621 active MDR-TB cases, which contributed 3036 person-years at risk with an average follow-up of 684 days (s.d. 149 days) per patient. Among them, there were 163 deaths during follow-up, representing a crude mortality rate of 537 deaths per 10,000 person-years. selleck chemical Patients ex NTL areas.

Increasing greenness exposure along with medical treatment reduces all-cause mortality among patients living in lower NTL areas.Toxicity of single organic pollutants or microplastics on organisms have been reported widely, however, their combined toxicity on bivalves was rarely investigated. In this paper, single and combined effects of phenanthrene (Phe, 20 μg·L-1 and 50 μg·L-1) and polystyrene (PS, 17 μm and 150 μm with 1 mg·L-1) microplastics on oxidative stress of the clam Mactra veneriformis were assayed under laboratory conditions with biomarkers including superoxide dismutase (SOD), glutathione-S-transferase (GST) and malondialdehyde (MDA). We found that Phe or PS single stress source could induce oxidative stress to clams. Besides, exposed to Phe 50 μg·L-1 or PS 150 μm caused the reduced expression of SOD and GST activities, leading to potential oxidative injury in clams. At each Phe concentration level, the order of single and combined toxicity on clams was Phe + PS 150 μm > Phe ≈ Phe + PS 17 μm. Phe exhibited a stronger toxic effect on clams than PS. Under joint exposure stress, the toxicity influence of Phe is still dominant.

Autoři článku: Hvidbergle9180 (Tillman Valenzuela)