Rosalesespinoza7750

Z Iurium Wiki

Verze z 22. 10. 2024, 04:25, kterou vytvořil Rosalesespinoza7750 (diskuse | příspěvky) (Založena nová stránka s textem „The mechanical properties and biocompatibility of nanocomposites composed of Acrylated Epoxidized Soybean Oil (AESO), nano-Hydroxyapatite (nHA) rods and ei…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The mechanical properties and biocompatibility of nanocomposites composed of Acrylated Epoxidized Soybean Oil (AESO), nano-Hydroxyapatite (nHA) rods and either 2-Hydroxyethyl Acrylate (HEA) or Polyethylene Glycol Diacrylate (PEGDA) and 3D printed using extrusion-based additive manufacturing methods were investigated. The effects of addition of HEA or PEGDA on the rheological, mechanical properties and cell-biomaterial interactions were studied. AESO, PEGDA (or HEA), and nHA were composited using an ultrasonic homogenizer and scaffolds were 3D printed using a metal syringe on an extrusion-based 3D printer while simultaneously UV cured during layer-by-layer deposition. Nanocomposite inks were characterized for their viscosity before curing, and dispersion of the nHA particles and tensile mechanical properties after curing. Proliferation and differentiation of human bone marrow-derived mesenchymal stem cells (BM-MSCs) were studied by seeding cells onto the scaffolds and culturing in osteogenic differentiation medium for 7, 14 and 21 days. Overall, each of the scaffolds types demonstrated controlled morphology resulting from the printability of nanocomposite inks, well-dispersed nHA particles within the polymer matrices, and were shown to support cell proliferation and osteogenic differentiation after 14 and 21 days of culture. However, the nature of the functional groups present in each ink detectably affected the mechanical properties and cytocompatibility of the scaffolds. Eprosartan supplier For example, while the incorporation of HEA reduced nHA dispersion and tensile strength of the final nanocomposite, it successfully enhanced shear yield strength, and printability, as well as cell adhesion, proliferation and osteogenic differentiation, establishing a positive effect perhaps due to additional hydrogen bonding.Moderate and prolonged payload release in response to a particular factor is highly demanded for efficient carriers of low-molecular-weight, chemically unstable phytopharmaceuticals. Thus, the objective of our contribution was to establish the effect of pH-responsive polyelectrolyte coatings on the release properties of carboxymethyl cellulose-based microparticles designed to deliver phytopharmaceuticals through the gastrointestinal tract. Microparticles were fabricated via extrusion coupled with external gelation and further coated with polyelectrolytes (PEs) (chitosan, gelatin, or PAH and PSS) involving electrostatic interactions. Successful deposition of PEs was confirmed by FTIR, and their thickness and viscosity were characterized in terms of QCM-D and ellipsometric techniques. The encapsulation efficiency of esculin, used as a model phytopharmaceutical, as proven by UV-Vis studies, was over 57%. SEM and fluorescence microscopy revealed a micrometric size, a mostly spherical shape and an altered topograpicles.Antimicrobial resistance has become a global issue and thus the development of natural products/biomedical materials composites with antibacterial activities is urgently needed. When acute wounds develop into chronic wounds, the wound environments become alkaline. As long as infections occur, the wound pH further increases, making the wounds difficult to heal. Besides, bacterial growth in poultry, meat, fish and seafood products is usually reflected in a marked increase of pH values. Herein, smart, stimuli responsive self-assembled multilayer and complex film were constructed through the formation of hydrogen bonds and hydrophobic interactions between hydroxypropyl methylcellulose (HPMC) and epigallocatechin-3-gallate (EGCG), thereby greatly reducing the hydrophilicity of HPMC and offering enhanced mechanical strength, superior free radical scavenging capability, and improved water vapor and light barrier properties. The EGCG/HPMC complex film was able to control EGCG release by tuning pH or temperature of the release medium. Furthermore, incorporation of CuS nanoparticles into the film allowed it to triggers EGCG release in an on-demand fashion under near-infrared (NIR) exposure. Bacterial growth in glucose-free nutrient broth medium caused pH to rise (near pH 8.0), leading to transformation of EGCG from phenol type to phenolate ion and then quinone, allowing for spontaneous generation of H2O2 to kill bacteria. The complex films changed their color in response to bacterial growth because EGCG transformed from phenol type to quinone type under alkaline condition. The green synthesized EGCG/HPMC complex films can be used as a colorimetric pH indicator and an antibacterial material for wound dressing and food packaging applications.Bone pain is the leading cause of morbidity in patients with metastatic cancer. Systemic administration of zoledronic acid (ZA) decreases skeletally-related events in bone cancer patients but is associated with major side effects. This project investigated two biomaterials, poly(methyl methacrylate) (PMMA) bone cement and poly(lactic-co-glycolic acid) (PLGA), for local ZA delivery. Compressive properties of PMMA samples were tested with increased drug loading, and in vitro ZA release profiles from PMMA cylinders and PLGA films were measured over 8 weeks. The activity of ZA eluted from both materials was evaluated on the RAW 264.7 macrophage cell line. PMMA samples released up to only 17% of incorporated drug, whereas PLGA films released over 95%. A burst profile was observed for PMMA, while ZA release from PLGA exhibited a typical triphasic profile. Drug bioactivity remained above 50% for both materials. Local ZA delivery from these materials may be useful in the treatment of metastatic bone cancer.We report a new chemical method for the functionalization of Mg-hydroxyapatite (Mg-HA) scaffold with Ag nanoparticles (Ag NPs) integrating in one step both the synthesis of the Ag NPs and their nano-structuring into the HA matrix (Ag-Mg-HA scaffold). This method exploits a green photochemical synthesis and allows the direct growth of Ag NPs on the Mg-HA surface. The surface structure of Ag-Mg-HA scaffold, investigated by scanning electron microscopy, shows no significant changes in the morphology upon Ag NPs incorporation. The presence of Ag was confirmed by EDX analysis. TEM and spectroscopic investigations show Ag NPs spherical shaped with a mean diameter of about 20 nm exhibiting the typical plasmon absorption band with maximum at 420 nm. The antibacterial properties of Ag-Mg-HA scaffolds were tested against two bacterial strains, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results show excellent antibacterial properties achieving up to 99% and 100% reduction of colonies for both bacteria cultures after 24 h of incubation and 100% of reduction after 48 h of incubation.

Autoři článku: Rosalesespinoza7750 (Cole Bachmann)