Lamontgraversen0974

Z Iurium Wiki

Verze z 22. 10. 2024, 04:21, kterou vytvořil Lamontgraversen0974 (diskuse | příspěvky) (Založena nová stránka s textem „response either by L-NAME or ODQ suggest that α-adrenergic agonists use the NO/cGMP pathway through α1D receptor. Ca2+ signaling independent from NO/cGMP…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

response either by L-NAME or ODQ suggest that α-adrenergic agonists use the NO/cGMP pathway through α1D receptor. Ca2+ signaling independent from NO/cGMP pathway may also play an at least partial role in α-adrenergic induced ductal fluid secretion.

Vitronectin, a cell adhesion and spreading factor, is suspected to play a role in the pathogenesis of age-related macular degeneration (AMD), as it is a major component of AMD-specific extracellular deposits (e.g., soft drusen, subretinal drusenoid deposits). The present study addressed the impact of AMD-associated non-synonymous variant rs704 in the vitronectin-encoding gene VTN on vitronectin functionality.

Effects of rs704 on vitronectin expression and processing were analyzed by semi-quantitative sequencing of VTN transcripts from retinal pigment epithelium (RPE) cells generated from human induced pluripotent stem cells (hiPSCs) and from human neural retina, as well as by western blot analyses on heterologously expressed vitronectin isoforms. Binding of vitronectin isoforms to retinal and endothelial cells was analyzed by western blot. Immunofluorescence staining followed extracellular matrix (ECM) deposition in cultured RPE cells heterologously expressing the vitronectin isoforms. Adhesion of fluoresular processes related to the sub-RPE aspects of AMD pathology. Although further research is required to address the subretinal disease aspects, this initial study supports an involvement of vitronectin in AMD pathogenesis.

To elucidate the collagen structure in the Descemet membrane (DM) of the human cornea and to characterize its rearrangement in patients with endothelial corneal dystrophies.

Corneas from nine human donors and dystrophic DMs removed from 16 affected eyes of 13 patients by endothelial keratoplasty (DMEK) were investigated using a correlative RT-qPCR and label-free two-channel multiphoton microscopy (MPM) setup. Although collagen formation was visualized by second harmonic generation, the cellular structure was determined by autofluorescence.

The DM of the human donor cornea was characterized by a consistent pattern of fine hexagonal collagen structures that form a supportive scaffold for the endothelial cells. Accordingly, network-forming collagens (8A1 and 8A2) but less fibrillar collagens (only 1A2) were expressed. DMEK resulted in significant (P < 0.0001) improvement of best-corrected visual acuity. In the removed dystrophic DMs, MPM analyses revealed collagen rearrangement in addition to loss of endothelial cells and the development of guttae. MPM analyses of the whole patient's DM demonstrated this collagen remodeling in its entirety and facilitated correlation to Scheimpflug corneal tomography. In most DMs a unique honeycomb collagen network was identified, with distinct bundles surrounding the guttae and correlating with expression of fibrillar collagens (1A1). Conversely, some DMs showed either reduced collagen on MPM and RT-qPCR analysis or diffuse thickening and storage of extracellular matrix.

The collagen structure of the DM and its adaptive remodeling in endothelial corneal dystrophies has been characterized for the first time here and will facilitate individual therapeutic approaches.

The collagen structure of the DM and its adaptive remodeling in endothelial corneal dystrophies has been characterized for the first time here and will facilitate individual therapeutic approaches.In this study, we have studied the cytotoxicity and genotoxic potency of 3 pro-oxidants; H2O2, menadione and KBrO3 in different dosing scenarios, namely acute (1-day dosing) and chronic (5-days). For this purpose, relative population doubling (RPD%) and mononucleated micronucleus (MN) test were used. TK6 cells and NH32 were employed in in vitro experiments. In the study, the total acute dose was divided into 5 days for each prooxidant chemicals by dose fractionation (1/5th per day) method. Acute dosing was compared to chronic dosing. The oxidative stress caused by the exposure of cells with pro-oxidant chemicals to the cells was determined by an optimized 2',7'-dichlorofluorescein diacetate (DCFHDA) test method. The antioxidant levels of the cell lines were altered with buthionine sulfoxide (BSO) and N-acetyl cysteine (NAC), and the effect of antioxidant capacity on the MN formation in the cells was observed with this method. In the case of H2O2 and menadione, fractional dosing has been observed to result in lower toxicity and lower genotoxicity. But in the case of KBrO3, unlike the other 2 pro-oxidants, higher MN induction was observed with fractionated doses. DCFHDA test clearly demonstrated ROS induction with H2O2 and menadione but not with KBrO3. Unexpectedly, DCFHDA test demonstrated that KBrO3 did not cause an increase ROS levels in both acute and chronic dosing, suggesting an alternative ROS induction mechanism. It was also observed that, treatment with BSO and NAC, caused increasing and decreasing of MN fold change respectively, allowing further ROS specific mechanisms to be explored. Hence, dose fractionation expectedly caused less MN, cytotoxicity and ROS formation with H2O2 and menadione exposure, but not with KBrO3. This implies a unique mechanism of action for KBrO3 induced genotoxicity. Chronic dosing in vitro may be a valuable approach allowing better understanding of how chemicals damage DNA and pose human hazards.Around 140 million people live in high-altitude (HA) conditions! and even a larger number visit such places for tourism, adventure-seeking or sports training. Rapid ascent to HA can cause severe damage to the body organs and may lead to many fatal disorders. find more During induction to HA, human body undergoes various physiological, biochemical, hematological and molecular changes to adapt to the extreme environmental conditions. Several literature references hint that gene-expression-regulation and regulatory molecules like miRNAs and transcription factors (TFs) control adaptive responses during HA stress. These biomolecules are known to interact in a complex combinatorial manner to fine-tune the gene expression and help in controlling the molecular responses during this stress and ultimately help in acclimatization. High-Altitude Human miRNA Database (HAHmiR.DB) is a unique, comprehensive and curated collection of miRNAs that have been experimentally validated to be associated with HA stress, their level of expression in different altitudes, fold change, experiment duration, biomarker association, disease and drug association, tissue-specific expression level, Gene Ontology (GO) and Kyoto Encyclopaedia of Gene and Genomes (KEGG) pathway associations.

Autoři článku: Lamontgraversen0974 (Vega Tran)