Mcnamarapennington9620

Z Iurium Wiki

Verze z 22. 10. 2024, 02:54, kterou vytvořil Mcnamarapennington9620 (diskuse | příspěvky) (Založena nová stránka s textem „The surface Toll-like receptor 9 (sTLR9) has been identified on the surface of the B cells and was presumed to be a negative regulator of B cell responses.…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The surface Toll-like receptor 9 (sTLR9) has been identified on the surface of the B cells and was presumed to be a negative regulator of B cell responses. learn more CpG ODN, a TLR9 agonist, has been successfully used as an adjuvant of hepatitis B vaccine to enhance antibody responses. However, it is unknown whether the sTLR9 is involved in regulating the activation and maturation of B cells in the antibody responses induced by CpG ODN-adjuvanted vaccines. In this study, we immunized mice with hepatitis B vaccine adjuvanted by CpG ODN (CpG 5805) and found that CpG 5805 enhanced the antibody response to vaccine and meanwhile down-regulated the sTLR9 levels on B cells. With antibody feeding assay and flow cytometry analysis, we further found that CpG 5805 induced a movement of the sTLR9 in B cells, internalized first and then mobilized to endosomes. Accompanied with the movement, CD80, CD86, CD40, and MHC II molecules were significantly up-regulated on the B cells. Interestingly, the B cells with internalized sTLR9 enlarged morphologically, and the sTLR9 levels were obviously lower and CD40 levels were obviously higher on the enlarged B cells. Together, the data presented here uncover that CpG ODN can induce the mobilization and relocation of sTLR9 in B cells, thereby triggering the B cell vigor by relieving the negative regulatory effect of sTLR9 on B cells, which may be one of the mechanisms for CpG ODN acting as a vaccine adjuvant to enhance the antibody response.Key points• CpG ODN-enhanced antibody response positively associates with B cell sTLR9 reduction.• CpG ODN reduces the sTLR9 levels by relocating it from B cell surface to endosomes.• sTLR9 reduction arouses B cell vigor via promoting B cell maturation and activation. Graphical Abstract.The coronavirus disease (COVID-19) caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly worldwide. Given that this contagious viral outbreak is still unfolding, it is urgent to understand the pathogenesis of SARS-CoV-2 infection and explore effective treatments to protect patients from developing a severe illness related to COVID-19. Recently, IFN-α has been considered a potential therapeutic strategy to treat COVID-19 disease, mainly because the innate immune system rapidly produces IFN-α as the first line of defense to combat viral infections. However, IFN-α can also play a role in immunoregulatory effects, causing pathogenic damage and uncontrolled inflammatory responses. There are 13 human IFN-α subtypes that bind to the same receptor and induce different interferon-stimulated gene (ISG) expression, regulating various antiviral and immunoregulatory effects. The varying degrees of inflammatory regulations may raise concerns about the possible side effects to enlarge the inflammatory responses, exacerbating the severity of infection. Thus, the analysis of various IFN-α subtype induction during SARS-CoV-2 infection is necessary in exploring the mechanism of COVID-19 pathogenesis. This review summarizes the current understanding of IFN-α in the pathogenesis of respiratory virus diseases and IFN-α based clinical intervention used in SARS-CoV-2 infection and other respiratory virus diseases. Besides, new ideas in selecting suitable IFN-α subtypes or combinations as drug candidates for viral infection treatment will also be discussed.Key Points• IFN-α plays an important role in anti-viral and immunoregulatory effects in COVID-19 patients caused by SARS-CoV-2.• The uncontrolled inflammation and disease severity correlated to the diversity of IFN-α subtype induction.• Selecting suitable IFN-α subtypes or combinations as drug candidates will be beneficial for the treatment of patients with COVID-19.

The drought and salt tolerances of wheat were enhanced by ectopic expression of the Arabidopsis ornithine aminotransferase (AtOAT) encoded gene. The OAT was confirmed to play a role in proline biosynthesis in wheat. Proline (Pro) accumulation is a common response to both abiotic and biotic stresses in plants. Ornithine aminotransferase (OAT) is pyridoxal-5-phosphate dependent enzyme involved in plant proline biosynthesis. During stress condition, proline is synthesized via glutamate and ornithine pathways. The OAT is the key enzyme in ornithine pathway. In this study, an OAT gene AtOAT from Arabidopsis was expressed in wheat for its functional characterization under drought, salinity, and heat stress conditions. We found that the expression of AtOAT enhanced the drought and salt stress tolerances of wheat by increasing the proline content and peroxidase activity. In addition, it was confirmed that the expression of AtOAT also played a partial tolerance to heat stress in the transgenic wheat plants. Moreoverm related gene TaP5CDH in the transgenic plants under stress conditions. Moreover, the genes involved in ornithine pathway (Orn-OAT-P5C/GSA-P5CR-Pro) were up-regulated along with the up-regulation of those genes involved in glutamate pathway (Glu-P5CS-P5C/GSA-P5CR-Pro). Therefore, we concluded that the expression of AtOAT enhanced wheat abiotic tolerance via modifying the proline biosynthesis by up-regulating the expression of the proline biosynthesis-associated genes and down-regulating that of the proline catabolic gene under stresses condition.

This study aimed to investigate the morphological variations in the cross-sectional anatomy of the meniscus between similar-sized matched menisci.

Knee MRI of 329 patients with intact menisci were retrospectively reviewed, and the meniscal length (ML), meniscal width (MW), and cross-sectional dimensions (meniscal height and width) of the anterior, posterior horns, and the corpus were measured. Patients with similar-sized menisci who had less than 1mm difference in ML and MW were matched. 330 male-to-male medial menisci (MM), 623 male-to-male lateral menisci (LM), 82 female-to-female MM, 233 female-to-female LM, 176 cross-gender MM, and 265 cross-gender LM unique combination of ideally matched pairs (total 1709) were generated. The disparity in the cross-sectional dimensions, absolute difference, and the paired percent differences was statistically analyzed.

The ML and MW in all groups were statistically similar, with a predefined absolute difference of 1mm both for ML and MW (paired percent difference < 5%).

Autoři článku: Mcnamarapennington9620 (Sosa Ottesen)