Lunanorton7228

Z Iurium Wiki

Verze z 22. 10. 2024, 00:35, kterou vytvořil Lunanorton7228 (diskuse | příspěvky) (Založena nová stránka s textem „Due to regular influx of organic matter and nutrients, waste stabilization ponds (WSPs) can release considerable quantities of greenhouse gases (GHGs). To…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Due to regular influx of organic matter and nutrients, waste stabilization ponds (WSPs) can release considerable quantities of greenhouse gases (GHGs). To investigate the spatiotemporal variations of GHG emissions from WSPs with a focus on the effects of sludge accumulation and distribution, we conducted a bathymetry survey and two sampling campaigns in Ucubamba WSP (Cuenca, Ecuador). The results indicated that spatial variation of GHG emissions was strongly dependent on sludge distribution. Thick sludge layers in aerated ponds and facultative ponds caused substantial CO2 and CH4 emissions which accounted for 21.3% and 78.7% of the total emissions from the plant. Conversely, the prevalence of anoxic conditions stimulated the N2O consumption via complete denitrification leading to a net uptake from the atmosphere, i.e. up to 1.4±0.2 mg-N m-2 d-1. Double emission rates of CO2 were found in the facultative and maturation ponds during the day compared to night-time emissions, indicating the important role of algal respiration, while no diel variation of the CH4 and N2O emissions was found. Despite the uptake of N2O, the total GHG emissions of the WSP was higher than constructed wetlands and conventional centralized wastewater treatment facilities. Hence, it is recommended that sludge management with proper desludging regulation should be included as an important mitigation measure to reduce the carbon footprint of pond treatment facilities.Micropollutants are ubiquitously found in natural surface waters and pose a potential risk to aquatic organisms. Stream biofilms, consisting of bacteria, algae and other microorganisms potentially contribute to bioremediating aquatic environments by biotransforming xenobiotic substances. When investigating the potential of stream biofilms to remove micropollutants from the water column, it is important to distinguish between different fate processes, such as biotransformation, passive sorption and active bioaccumulation. However, due to the complex nature of the biofilm community and its extracellular matrix, this task is often difficult. In this study, we combined biotransformation experiments involving natural stream biofilms collected up- and downstream of wastewater treatment plant outfalls with the QuEChERS extraction method to distinguish between the different fate processes. The QuEChERS extraction proved to be a suitable method for a broad range of micropollutants (> 80% of the investigated compounds). We found that 31 out of 63 compounds were biotransformed by the biofilms, with the majority being substitution-type biotransformations, and that downstream biofilms have an increased biotransformation potential towards specific wastewater-relevant micropollutants. Overall, using the experimental and analytical strategy developed, stream biofilms were demonstrated to have a broad inherent micropollutant biotransformation potential, and to thus contribute to bioremediation and improving ecosystem health.This study investigated the mechanisms of mixed IO3-/I- system under UV irradiation in drinking water and compared the iodinated trihalomethanes (I-THMs) formation of a mixed IO3-/I- system to that of single I- and IO3- systems during subsequent chloramination. The effects of initial I-/IO3- molar ratio, pH, and UV intensity on a mixed IO3-/I- system were studied. The introduction of I- enhanced the conversion rate of IO3- to reactive iodine species (RIS). Besides, IO3- degradation rate increased with the increase of initial I- concentration and UV intensity and the decrease of pH value. In a mixed IO3-/I- system, IO3- could undergo direct photolysis and photoreduction by hydrated electron (eaq-). Moreover, the enhancement of I-THM formation in a mixed IO3-/I- system during subsequent chloramination was observed. 6-Formylindolo[3,2-bcarbazole] The I-THM yields in a mixed IO3-/I- system were higher than the sum of I-THMs produced in a single IO3- and I- systems at all the evaluated initial I- concentrations and pH values. The difference between I-THM formation in a mixed IO3-/I- system and the sum of I-THMs in a single IO3- and I- systems increased with the increase of initial I- concentration. As the initial pH decreased from 9 to 5, the difference of I-THM yields enhanced, while the total I-THM yield of a mixed IO3-/I- system and single I- and IO3- systems decreased slightly. Besides, IO3--I--containing water with DOC concentration of 2.5-4.5 mg-C/L, which mainly contained humic-acid substances, had a higher risk in I-THMs formation than individual I--containing and IO3--containing water.After reaction with permanganate or ferrate, the resulted Mn-loaded and Fe-loaded biochar (MnOx/biochar and FeOx/biochar) exhibited excellent catalytic ozonation activity. O3 (2.5 mg/L) eliminated 48% of atrazine (ATZ, 5 μM) within 30 min at pH 7.0, while under identical conditions, ozonation efficiency of ATZ increased to 83% and 100% in MnOx/biochar and FeOx/biochar (20 mg/L) heterogeneous catalytic systems, respectively. Radical scavenger experiment and electron paramagnetic resonance (EPR) analysis confirmed that hydroxyl radical (•OH) was the dominant oxidant. Total Lewis acid sites on MnOx/biochar and FeOx/biochar were 3.5 and 4.1 times of that on the raw biochar, which induced enhanced adsorption of O3 and its subsequent decomposition into •OH. Electron transfer via redox pairs on MnOx/biochar and FeOx/biochar was observed by cyclic voltammetry scans, which also functioned in the improved catalytic capacity. Degradation pathways of ATZ in MnOx/biochar and FeOx/biochar ozonation systems were proposed, with 34.6% and 44.8% of dechlorination effect accomplished within 30 min of reaction, which was improved by 4.1 and 5.3 times compared to pure ozonation. After 12-hour treatment, acute toxicity of ATZ oxidation products was reduced from 38.3% of pure ozonation system to 14.5% and 6.3% of activated ozonation systems with MnOx/biochar and FeOx/biochar, respectively. Mn-loaded biochar and Fe-loaded biochar have great potential for heterogeneous catalytic ozonation of polluted water.Bioassays are increasingly being implemented for water quality monitoring as targeted chemical analyses are not always sufficient for the detection of all emerging chemicals or transformation products. However, the interpretation of bioassay results remains challenging, in particular because a positive response does not necessarily indicate that there may be an increased risk. For this purpose, effect-based trigger (EBT) values have been introduced as thresholds above which action needs to be undertaken to determine the cause of the response. The goals of this study were to (i) evaluate various approaches used to determine EBT values and (ii) based on the findings, derive human health EBT values for Chemical Activated LUciferase gene eXpression (CALUX) in vitro bioassays used for routine monitoring of water quality in the Netherlands. Finally, (iii) an uncertainty analysis was carried out to determine the protective power of the derived EBT values and the chance that potentially harmful substances might not be detected.

Autoři článku: Lunanorton7228 (Griffin Rytter)