Albertserup1581

Z Iurium Wiki

Verze z 21. 10. 2024, 23:43, kterou vytvořil Albertserup1581 (diskuse | příspěvky) (Založena nová stránka s textem „Drug capture is a promising technique to prevent off-target chemotherapeutic agents from reaching systemic circulation and causing severe side effects. The…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Drug capture is a promising technique to prevent off-target chemotherapeutic agents from reaching systemic circulation and causing severe side effects. The current work examines the viability of using immobilized aldehydes for drug-capture applications via Schiff base formation between doxorubicin (DOX) and aldehydes. Commercially available pyridoxal-5'-phosphate (VB6) was immobilized on iron oxide nanoparticles (IONPs) to capture DOX from human serum. Leaching of VB6 persisted as a primary issue and thus various aldehydes with anchoring groups such as catechol, silatrane, and phosphonate esters have been studied. The phosphonate group-based anchor was the most stable and used for further capture studies. To improve the hydrophilic nature of the aldehydes, sulfonate-containing aldehydes and polyethylene glycols (PEGs) were investigated. Finally, the optimized functionalized iron oxide particles, PEGylated-IONP, were used to demonstrate doxorubicin capture from human serum at biologically relevant temperature (37 °C), time (30 min), and concentrations (μM). The current study sets the stage for the development of potential compact dimension capture device based on surface-anchorable polymers with aldehyde groups.The production of silicone tetrachloride (SiCl4) from rice husk char by chlorination was investigated, and the effect of the char preparation temperature on SiCl4 volatilization and the coexisting element species in the char was examined. The behavior of chlorine (Cl) and the change in pore properties during char chlorination were analyzed, and the reaction mechanism was discussed. The performance of Hg ion removal of the chlorination residue was also investigated. At 1000 °C chlorination, the optimum rice husk pyrolysis temperature for attaining high ash-release extent was 800 °C. Ash volatilization during char chlorination with heat treatment mainly occurred at >300 °C and reached a release extent of ∼75% by 1000 °C. Si and P volatilization started at >300 °C and reached 70-75% by 1000 °C. In contrast, Na and K the volatilization occurred at >700 °C, with a 50% volatilization extent by 1000 °C. Mg and Ca had a volatilization rate of less then 20% by 1000 °C. When the char was held at 1000 °C, the release extent of Si and P reached 75-80% by 10 min. Na and K volatilized almost completely by 10 min, and the release extent of Mg and Ca increased with increasing holding time and became 10-50% by 60 min. The Cl content in the residue obtained at each chlorination temperature increased from 300 to 700 °C and then decreased with increasing temperature. The majority of Cl taken up in the residue was an H2O insoluble form. The surface area and pore volume of the chlorinated residue tended to increase with increasing chlorination temperature, with the former increasing to 335 m2/g at 1000 °C and 10 min holding. The maximum mercury adsorption amount of the chlorinated residue obtained at 1000 °C, 10 min holding was 620 mg/g, indicating the mercury ion adsorption performance of the chlorinated residue.Rosin is a sustainable resource, which is mainly composed of resin acid. Rosin-modified resin is widely used in adhesives, inks, coatings, and other fields, and its stability is very important for the production, storage, and use of products. Thermal stability and reactivity of three resin acids (levopimaric acid, neoabietic acid, and dehydroabietic acid) and four rosin-modified resins were studied using an accelerating rate calorimeter (ARC). They are stable, and exothermic reactions do not occur even when they were heated to 200 °C under a nitrogen atmosphere, but they are unstable under an oxygen atmosphere. The mechanism of the oxidation reaction process was found first, resin acids absorb oxygen, and then an exothermic oxidation occurs. The initial exothermic temperature (T0) of levopimaric acid, neoabietic acid, and dehydroabietic acid are 354.01, 353.83, and 398.20 K, the initial oxidation kinetics shows a second-order reaction, and the activation energies (Ea) are 42.90, 58.05, and 46.60 kJ/mol, respectively. Peroxide concentration of three resin acids were determined by iodometry. The T0 values of hydrogenated rosin, disproportionated rosin, hydrogenated rosin glyceride, and hydrogenated rosin pentaerythritol ester, the four rosin-modified resin, are 353.71, 348.32, 412.85, and 412.44 K. Levopimaric acid and neoabietic acid have higher oxidative reactivity and easily undergoes an oxidation reaction at lower temperature. Rosin-modified resins are stable and find it difficult to undergo oxidation reactions.The domain structural transition and structural heterogeneity (SH) in GeO2 glass at 300 K and pressures up to 100 GPa are studied by means of molecular dynamics (MD) simulation. The results demonstrate that the structure of GeO2 glass comprises domain D4, domain D5, or domain D6, which depends strongly on pressure, where domain Dx (x = 4, 5, or 6) is a cluster of connected GeO x units, in which all Ge atoms possess the same coordination number of x. In the range of 9-18 GPa, GeO2 glass undergoes a structural transformation from domain D4 to domain D6 via domain D5. find more Under densification, structural evolution occurs along with the O xx → O xy atom variation, which comprises the processes of both merging and splitting of domain Dx and the exchange of domain-boundary (DB) atoms. The densification leads to a decrease of the Voronoi polygon (VP) volume of atoms. We found that the coexistence of separate domain structures is the origin of spatial SH in GeO2 glass. Pressure-dependent structural heterogeneity in GeO2 glass is also discussed in detail.Native defects and nonmetal doping have been shown to be an effective way to optimize the photocatalytic properties of Bi2WO6. However, a detailed understanding of defect physics in Bi2WO6 has been lacking. Here, using the Heyd-Scuseria-Ernzerhof hybrid functional defect calculations, we study the formation energies, electronic structures, and optical properties of native defects and nonmetal element (C, N, S, and P) doping into Bi2WO6. We find that the Bi vacancy (Bivac), O vacancy (Ovac), S doping on the O site (SO), and N doping on the O site (NO) defects in the Bi2WO6 can be stable depending on the Fermi level and chemical potentials. By contrast, the substitution of an O atom by a C or P atom (CO, PO) has high formation energy and is unlikely to form. The calculated electronic structures of the Bivac, Ovac, SO, and NO defects indicate that the band-gap reduction of Ovac2+, Bivac3-, and SO defects is mainly due to forming shallow impurity levels within the band gap. The calculated absorption coefficients of Ovac2+, Bivac3-, and SO show strong absorption in the visible light region, which is in good agreement with the experimental results.

Autoři článku: Albertserup1581 (Hovgaard Pridgen)