Bondesencorbett4133

Z Iurium Wiki

Verze z 21. 10. 2024, 20:48, kterou vytvořil Bondesencorbett4133 (diskuse | příspěvky) (Založena nová stránka s textem „Retrospective studies involving the screening of frozen stored collections of samples are commonplace when a new threat emerges, but it has been demonstrat…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Retrospective studies involving the screening of frozen stored collections of samples are commonplace when a new threat emerges, but it has been demonstrated that the freeze-thaw process can affect bacterial viability. The study of colistin-resistant bacteria in human and animal samples is an example of this issue. In this study, we compared culture-based and PCR-based methods for analyzing relative occurrence and diversity of colistin-resistant bacteria in caecal samples to determine the most appropriate method for frozen samples. Thus, 272 samples from the caecal contents of healthy pigs were tested before and after a 6-month freezing period. A selective medium was used when traditional isolation of colistin-resistant bacteria was tested, while a real-time SYBR® Green I PCR assay was applied for mcr-1 quantification. The number of samples with colistin-resistant isolates was higher in fresh samples (247/272) than in frozen ones (67/272) and showed a higher diversity of colistin-resistant genera. PCR identification of mcr colistin resistance genes evidenced that mcr-1 was the most prevalent mcr gene and mcr-2 was detected for the first time in pigs from Spanish animal production. The number of samples with mcr-1-carrying bacteria after a freezing period decreased, while real-time quantitation of the mcr-1 gene showed similar values in frozen and fresh samples. Therefore, when frozen cecal samples need to be analyzed, molecular detection of DNA could be the best option to provide a highly representative frame of the initial population present in the sample, and culture-based methods might be a useful complement to study colistin resistance levels.Cyanobacteria are found in most illuminated environments and are key players in global carbon and nitrogen cycling. Although significant efforts have been made to advance our understanding of this important phylum, still little is known about how members of the cyanobacteria affect and respond to changes in complex biological systems. This lack of knowledge is in part due to our dependence on pure cultures when determining the metabolism and function of a microorganism. We took advantage of the Culture Collection of Microorganisms from Extreme Environments (CCMEE), a collection of more than 1,000 publicly available photosynthetic co-cultures maintained at the Pacific Northwest National Laboratory, and assessed via 16S rRNA amplicon sequencing if samples readily available from public culture collection could be used in the future to generate new insights into the role of microbial communities in global and local carbon and nitrogen cycling. Results from this work support the existing notion that culture depositories in general hold the potential to advance fundamental and applied research. Although it remains to be seen if co-cultures can be used at large scale to infer roles of individual organisms, samples that are publicly available from existing co-cultures depositories, such as the CCMEE, might be an economical starting point for such studies. Access to archived biological samples, without the need for costly field work, might in some circumstances be one of the few remaining ways to advance the field and to generate new insights into the biology of ecosystems that are not easily accessible. 3-Aminobenzamide The current COVID-19 pandemic, which makes sampling expeditions almost impossible without putting the health of the participating scientists on the line, is a very timely example.The Beal's eyed turtle (Sacalia bealei) is threatened with extinction due to hunting for large-scale trade. In Hong Kong, there are some of the world's remaining wild populations of S. bealei, as well as a breeding colony. This breeding colony is at the core of conservation efforts (captive breeding, reintroduction programs). Therefore, we would like to know how captivity, in particular diet, affects the gut microbiota. Using high-throughput 16S rRNA gene sequencing, we comparatively analyzed the fecal microbiota of wild and captive S. bealei. We found that wild S. bealei have higher alpha diversity than captive S. bealei, but the difference was not significant. Significant differences were found in β-diversity; at the phylum level, wild S. bealei have higher relative abundances of Proteobacteria and captive S. bealei have higher relative abundances of Firmicutes. At the genus level, Cetobacterium and Citrobacter are more abundant in wild S. bealei, while Clostridium spp. are significantly more abundant in captive S. bealei. These results suggest conditions in captivity, with diet being a major factor, influence the gut microbiota of S. bealei. The connection between diet and health has always been considered for captive animals, and in this study we use the gut microbiota as an another tool to assess health.

With increasing numbers of interplanetary missions, there is a need to establish robust protocols to ensure the protection of extraterrestrial planets being visited from contamination by terrestrial life forms. The current study is the first report comparing the commercial resupply vehicle (CRV) microbiome with the International Space Station (ISS) microbiome to understand the risks of contamination, thus serving as a model system for future planetary missions.

Samples obtained from the internal surfaces and ground support equipment of three CRV missions were subjected to various molecular techniques for microbial diversity analysis. In total, 25 samples were collected with eight defined locations from each CRV mission prior to launch. In general, the internal surfaces of vehicles were clean, with an order of magnitude fewer microbes compared to ground support equipment. The first CRV mission had a larger microbial population than subsequent CRV missions, which were clean as compared to the initial CRV lontal microbiome. These findings suggest that the maintenance protocols in cleaning CRV surfaces are highly effective in controlling the contaminating microbial population during cargo transfer to the ISS via the CRV route.Precipitation is predicted to become more intense in Southern China in the context of climate change; however, the responses of microbial communities to variations in soil moisture have not been well documented for karst areas. The climate is typically in a subtropical monsoon category with two different seasons a dry season (December-May) and a wet season (June-November). Based on a randomized complete block design (RCBD), a water addition experiment (0, +20, +40, and +60% relative to local precipitation) was established in April 2017, with five replicates, in a degraded grass-shrub community. Sampling was performed in May and at the end of August of 2017. Macroelements (C, H, N, P, K, Ca, Mg, and S), microelements (Mn, Fe, Zn, and Cu), and non-essential elements (Na, Al, and Si) were quantified in the soil. The total DNA of the soil samples was analyzed through 16S rRNA amplicon by Illumina Miseq. Subsequent to the addition of water during both the dry and wet seasons, the concentrations of non-metal elements (C, H, N, S, and P, except for Si) in the soil remained relatively stable; however, metal elements (K, Na, Fe, and Mg, along with Si) increased significantly, whereas Zn and Ca decreased.

Autoři článku: Bondesencorbett4133 (Battle Workman)