Franksgreenwood9680

Z Iurium Wiki

Verze z 21. 10. 2024, 15:04, kterou vytvořil Franksgreenwood9680 (diskuse | příspěvky) (Založena nová stránka s textem „The observations were correlated to the understanding of the electrokinetic properties of CaCO3 and Mg(OH)2 particles in lime softening. The findings provi…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The observations were correlated to the understanding of the electrokinetic properties of CaCO3 and Mg(OH)2 particles in lime softening. The findings provide insights for evaluating onsite coagulant dose and optimizing the process.Wide application leads to release of graphene oxide (GO) in aquatic environment, where it is subjected to photoaging and changes in physicochemical properties. As important component of natural organic matters, proteins may greatly affect the aggregation behaviors of photoaged GO. The effects of a typical model protein (bovine serum albumin, BSA) on the colloidal stability of photoaged GO were firstly investigated. Photoaging reduced the lateral size and oxygen-containing groups of GO, while the graphene domains and hydrophobicity increased as a function of irradiation time (0-24 h). Consequently, the photoaged GO became less stable than the pristine one in electrolyte solutions. Adsorption of BSA on the surface of the photoaged GO decreased as well, leading to thinner BSA coating on the photoaged GO. In the solutions with low concentrations of electrolytes, the aggregation rate constants (k) of all the photoaged GO firstly increased to the maximum agglomeration rate constants (kfast, regime I), maintained at kfast (regime Ⅱ) and then decreased to zero (regime Ⅲ) as the BSA concentration increased. In both regime I and III, the photoaged GO were less stable at the same BSA concentrations, and the impacts of BSA on the colloidal stability of the photoaged GO were less than the pristine one, which was attributed to the weaker interactions between the photoaged GO and BSA. This study provided new insights into the colloidal stability and fate of GO nanomaterials, which are subjected to extensive light irradiation, in wastewater and protein-rich aquatic environment.Organic pollutants that are introduced into the aquatic ecosystem can transform by various mechanisms. Biotransformation is an important process for predicting the remaining structures of pollutants in the ecosystem, and their toxicity. This study focused on triphenyl phosphate (TPHP), which is a commonly used organophosphate flame retardant and plasticizer. Since TPHP is particularly toxic to aquatic organisms, it is essential to understand its biotransformation in the aquatic environment. In the aquatic ecosystem, based on consideration of the producer-consumer-decomposer relationship, the biotransformation products of TPHP were identified, and their toxicity was predicted. Liquid chromatography-high resolution mass spectrometry was used for target, suspect, and non-target analysis. The obtained biotransformation products were estimated for toxicity based on the prediction model. As a result, 29 kinds of TPHP biotransformation products were identified in the aquatic ecosystem. Diphenyl phosphate was detected as a common biotransformation product through a hydrolysis reaction. In addition, products were identified by the biotransformation mechanisms of green algae, daphnid, fish, and microorganism. Most of the biotransformation products were observed to be less toxic than the parent compound due to detoxification except some products (hydroquinone, beta-lyase products, palmitoyl/stearyl conjugated products). Since various species exist in a close relationship with each other in an ecosystem, an integrated approach for not only single species but also various connected species is essential.Water, as one of the main components of bone, has a significant impact on the mechanical properties of bone. However, the micro-/nanoscale toughening mechanism induced by water in bone remains at only the theoretical level with static observations, and further research is still needed. In this study, a new in situ mechanical test combined with atomic force microscopy (AFM) was used to track the micro-/nanocrack propagation of hydrated and dehydrated antler bones in situ to explore the influence of water on the micro-/nanomechanical behavior of bone. Nicotinamide order In hydrated bone, observations of the crack tip region revealed major uncracked ligament bridging, and the conversion of mineralized collagen fibrils (MCFs) from bridging to breaking is clearly seen in real time. In dehydrated bone, multiple uncracked ligament bridges can be observed, but they are quickly broken by cracks, and the MCFs tend to break directly instead of forming fibril bridges. These experimental results indicate that the hydrated interface promotes slippage between collagen and the mineral phase and slippage between MCFs, while the dehydrated interface causes MCFs to fracture directly under lower strain. The platform we built provides new insights for studying the mechanism of toughening of the components in bones.This research investigated for the first time the influence of the single fractions (proteins, lipids, starch, cellulose, fibers and sugars) composing Household Food Wastes on Volatile Fatty Acids (VFA). A production at different pH (uncontrolled, 5.5 and 7.0) both the amount and profile of VFA were investigated. It was found that fractions rich in proteins and starch led to the greatest VFA productions (12-15 g/L), especially at neutral pH condition. On the contrary, fractions rich in cellulose, fibers, and sugars showed a very low VFA production ( less then 2 g/L). The chemical nature of HFW influenced the speciation of the microbial communities too. Lactobacillaceae family was highly represented in proteins-, starch-, fibers and sugars-rich substrates and Atopobiaceae, Eggerthellaceae, Acidaminococcaceae and Veillonellaceae displayed positive correlation to VFAs production. Instead, Comamonadaceae showed high relative abundance in lipids- and cellulose-rich fraction and was negatively correlated to the VFAs generation.The emphasis of this study lies in how strain SYF15 regulates molecular weight (MW) fractions of soluble microbial products (SMPs) in response to low carbon to nitrogen (C/N) ratio, with high denitrification performance (over 99%). Results indicated SMPs with MW >100 and less then 50 kDa undoubtedly participated in denitrification before 12.0 h in C/N = 2.0, while sodium acetate was preferred in C/N = 5.0, indicating strain YSF15 was induced to degrade SMPs as a carbon source in low C/N. Additionally, lower C/N activated the extracellular metabolism, with increased fluorescence regional integration (FRI) volume amplitude by 48.08 and 53.43% (versus C/N = 5.0) in MW = 50-10 and 10-3 kDa, respectively. The FRI volume of proteins yielded greater with more degradable components than higher C/N in MW = 100-3 kDa, whereas polysaccharide and protein concentrations differed little with considerable biodegradability, implying components inside protein changed dramatically. This pioneering work contributed to the understanding of denitrification with carbon source deficiency.The sulfur(thiosulfate)-driven autotrophic denitrification coupled with Anammox (SDDA) process is proposed as an emerging technology for wastewater containing NH4+-N and NO3--N. However, the influence of organic matter on the SDDA process is not fully understood. A long-term experiment has shown that a moderate organic (acetate) (<140 mg/L COD) can accelerate the heterotrophic/autotrophic denitrification and Anammox activity, to reach as high as 92.8% ± 0.3% total nitrogen at a loading rate of 1.34 kg-N/(m3·d). Batch test results showed that Anammox made the largest contribution to the removal of nitrogen, even in an SDDA system with COD addition. Additionally, organics can promote the bioavailability of solid sulfur through reaction with sulfide to form polysulfides, which increased nitrite accumulation to forward Anammox process. Sulfur-oxidizing bacteria (e.g., Thiobacillus and Denitratisoma) coexisted with Anammox bacteria (e.g., Ca. link2 Brocadia and Ca. Kuenenia) in the SDDA system despite the addition of exogenous COD.The present work was focused on the investigation of lignin isolation from saw industry biomass (sawdust (SD)) using alkali solution, and to perform economic analysis for 2000 kg/batch hypothetical plant using techno-economic analysis. The isolated lignin was fractionated using organic solvent to obtain purified lignin. FTIR and 1H NMR analysis were performed to examine the structural characteristics of lignin. Lignin nanoparticles (LN) showed higher total phenolic content (TPC) (244.1 ± 2 µg of GAE per mg) and antioxidant activity (63.2 ± 1.7%) compared with crude lignin (CL), ethanol fractionated lignin (EL), and acetone fractionated lignin (AL). SuperPro designer was exposed to design and simulated 2000 kg/batch of sawdust fractionation process. The techno-economic analysis estimated that the lignin production cost is about $ 487,000 per year, and the annual revenue could be $ 1,850,000 per year. The techno-economic analysis and sensitivity analysis could be useful for the industrial level sawdust fractionation process.Resistant pollutants like oil, grease, pharmaceuticals, pesticides, and plastics in wastewater are difficult to be degraded by traditional activated sludge methods. These pollutants are prevalent, posing a great threat to aquatic environments and organisms since they are toxic, resistant to natural biodegradation, and create other serious problems. link3 As a high-efficiency biocatalyst, enzymes are proposed for the treatment of these resistant pollutants. This review focused on the roles and applications of enzymes in wastewater treatment. It discusses the influence of enzyme types and their sources, enzymatic processes in resistant pollutants remediation, identification and ecotoxicity assay of enzymatic transformation products, and typically employed enzymatic wastewater treatment systems. Perspectives on the major challenges and feasible future research directions of enzyme-based wastewater treatment are also proposed.In this study, the anaerobic digestion (AD) applications of early & late biochar dosage were compared for municipal leachate treatment, with the objective of studying the flexible use of biochar as a mitigation measure for biomethane recovery. In two experimental phases, biochar was favourable for the immediate promotion of AD performances, as revealed by Gompertz's model of reduced lag phases, higher biomethane generation rates, and increased biomethane yields. Irrespective of late biochar dosage, it could still retrieve 89% of the ultimate biomethane potential. Comparing the residual VFAs (volatile fatty acids) compositions, it was found that the fraction of long-chain VFAs accounted for 81% of total VFAs in reactor set of early biochar dosage, while it was only 38% in the reactor of late one. Parallel evidence suggested that the schedule of biochar dosage not only could affect methanogenic responses but also the VFAs conversion pathways.The formation of either acetoin or D-2,3-butanediol (D-BDO) by Bacillus amyloliquefaciens cultivated on bakery waste hydrolysates has been evaluated in bioreactor cultures by varying the volumetric oxygen transfer coefficient (kLa). The highest D-BDO production (55.2 g L-1) was attained in batch fermentations with kLa value of 64 h-1. Batch fermentations performed at 203 h-1 led to the highest productivity (2.16 g L-1h-1) and acetoin production (47.4 g L-1). The utilization of bakery waste hydrolysate in fed-batch cultures conducted at kLa of 110 h-1 led to combined production of acetoin, meso-BDO and D-BDO (103.9 g L-1). Higher kLa value (200 h-1) resulted to 65.9 g L-1 acetoin with 1.57 g L-1h-1 productivity. It has been demonstrated that the kLa value may divert the bacterial metabolism towards high acetoin or D-BDO production during fermentation carried out in crude bakery waste hydrolysates.

Autoři článku: Franksgreenwood9680 (Dyer Gotfredsen)