Serranoreid4641

Z Iurium Wiki

Verze z 21. 10. 2024, 14:00, kterou vytvořil Serranoreid4641 (diskuse | příspěvky) (Založena nová stránka s textem „It was found that the samples with 4.5% binder content, 3.75% GRP-WP and 1.25% limestone filler content produced the results both satisfying the specificat…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

It was found that the samples with 4.5% binder content, 3.75% GRP-WP and 1.25% limestone filler content produced the results both satisfying the specification requirements and providing an optimum mix design. It is believed that use of GRP-WP waste in HMA production would be a very useful way of recycling GRP-WP.Automatic inspection of surface defects is crucial in industries for real-time applications. Nowadays, computer vision-based approaches have been successfully employed. However, most of the existing works need a large number of training samples to achieve satisfactory classification results, while collecting massive training datasets is labor-intensive and financially costly. Moreover, most of them obtain high accuracy at the expense of high latency, and are thus not suitable for real-time applications. In this work, a novel Concurrent Convolutional Neural Network (ConCNN) with different image scales is proposed, which is light-weighted and easy to deploy for real-time defect classification applications. To evaluate the performance of ConCNN, the NEU-CLS dataset is used in our experiments. Simulation results demonstrate that ConCNN performs better than other state-of-the-art approaches considering accuracy and latency for steel surface defect classification. Specifically, ConCNN achieves as high as 98.89% classification accuracy with only around 5.58 ms latency over low training cost.Aberrant metabolism is a major hallmark of cancer. Abnormal cancer metabolism, such as aerobic glycolysis and increased anabolic pathways, has important roles in tumorigenesis, metastasis, drug resistance, and cancer stem cells. Well-known oncogenic signaling pathways, such as phosphoinositide 3-kinase (PI3K)/AKT, Myc, and Hippo pathway, mediate metabolic gene expression and increase metabolic enzyme activities. Vice versa, deregulated metabolic pathways contribute to defects in cellular signal transduction pathways, which in turn provide energy, building blocks, and redox potentials for unrestrained cancer cell proliferation. Studies and clinical trials are being performed that focus on the inhibition of metabolic enzymes by small molecules or dietary interventions (e.g., fasting, calorie restriction, and intermittent fasting). Similar to genetic heterogeneity, the metabolic phenotypes of cancers are highly heterogeneous. This heterogeneity results from diverse cues in the tumor microenvironment and genetic mutations. Hence, overcoming metabolic plasticity is an important goal of modern cancer therapeutics. This review highlights recent findings on the metabolic phenotypes of cancer and elucidates the interactions between signal transduction pathways and metabolic pathways. We also provide novel rationales for designing the next-generation cancer metabolism drugs.The manufacture of biomaterial surfaces with desired physical and chemical properties that can directly induce osteogenic differentiation without the need for biochemical additives is an excellent strategy for controlling the behavior of mesenchymal stem cells (MSCs) in vivo. We studied the cellular and molecular reactions of MSCs to samples with a double-sided calcium phosphate (CaP) coating and an average roughness index (Ra) of 2.4-4.6 µm. The study aimed to evaluate the effect of a three-dimensional matrix on the relative mRNA expression levels of genes associated with the differentiation and maturation of MSCs toward osteogenesis (RUNX2, BMP2, BMP6, BGLAP, and ALPL) under conditions of distant interaction in vitro. Correlations were revealed between the mRNA expression of some osteogenic and cytokine/chemokine genes and the secretion of cytokines and chemokines that may potentiate the differentiation of cells into osteoblasts, which indicates the formation of humoral components of the extracellular matrix and the creation of conditions supporting the establishment of hematopoietic niches.Winter Savory (Satureja montana L.) has been used in traditional medicine and as a spice or natural food preservative in the Mediterranean region for centuries. In this paper, some technological and analytical aspects of the S. montana tinctures development and an evaluation of the essential oil composition are provided. The total phenolic and flavonoid contents and phenolic compounds profile analyzed spectrophotometrically and by high-performance thin-layer chromatography (HPTLC), respectively, were evaluated in the developed tinctures. The results showed that the tinctures prepared from the S. montana herb by maceration or remaceration are rich in polyphenols, and there is an influence of the technological factors (particle size and extraction mode) on the total phenolic and flavonoid contents. Caffeic, rosmarinic, and chlorogenic acids, (-)-catechin and rutin were identified in the tinctures using the HPTLC method. p-Thymol (81.79%) revealed by gas chromatography-mass spectrometry (GC-MS) was the predominant compound of the essential oil of this plant. Thus, the high contents of polyphenols and flavonoids in the developed tinctures and p-thymol among the volatile components of the S. montana essential oil could indicate the promising antioxidant and antimicrobial properties of these herbal preparations. The obtained results are a ground for the organization of the manufacture of the S. montana tincture and essential oil with the purpose of performing preclinical studies.Oxidative stress (OS) represents a state of an imbalanced amount of reactive oxygen species (ROS) and/or a hampered efficacy of the antioxidative defense system. Cells of the central nervous system are particularly sensitive to OS, as they have a massive need of oxygen to maintain proper function. Consequently, OS represents a common pathophysiological hallmark of neurodegenerative diseases and is discussed to contribute to the neurodegeneration observed amongst others in Alzheimer's disease and Parkinson's disease. In this context, accumulating evidence suggests that OS is involved in the pathophysiology of Niemann-Pick type C1 disease (NPC1). NPC1, a rare hereditary neurodegenerative disease, belongs to the family of lysosomal storage disorders. buy Vismodegib A major hallmark of the disease is the accumulation of cholesterol and other glycosphingolipids in lysosomes. Several studies describe OS both in murine in vivo and in vitro NPC1 models. However, studies based on human cells are limited to NPC1 patient-derived fibroblasts.

Autoři článku: Serranoreid4641 (Tarp Lynn)