Mosleyanthony5184

Z Iurium Wiki

Verze z 21. 10. 2024, 12:33, kterou vytvořil Mosleyanthony5184 (diskuse | příspěvky) (Založena nová stránka s textem „Challenges, opportunities and future outlooks of this field have also been discussed at the end.The study was based on the removal of nitrate and sulfide,…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Challenges, opportunities and future outlooks of this field have also been discussed at the end.The study was based on the removal of nitrate and sulfide, and aimed to nitrite accumulation. The process of autotrophic denitrification driven by sulfide as an electron donor was investigated in a sequencing batch reactor. The research showed that autotrophic denitrification successfully started on day 22, and the removal rates of NO3--N and S2--S were 95.8% and 100%, respectively, when the S/N molar ratio was 1.45. When the S/N ratio was reduced to 0.94, the phenomenon of NO2--N accumulation was observed. NO2--N continuously accumulated, and the maximum accumulation rate was 55.3% when the S/N ratio was 0.8. In the batch test, the study showed that NO2--N accumulation was optimal when the S/N ratio was 0.8, and the NO2--N concentration increased with increasing NO3--N concentration at the same S/N ratio. Microbial communities also changed based on the high-throughput analysis, and Proteobacteria (59.5%-84%) was the main phylum. Arenimonas (11.4%-28.2%) and uncultured_f_ Chromatiaceae (5.7%-27.5%) were the dominant bacteria, which complete denitrification and desulfurization throughout the operating system. Therefore, this study provided a theoretical basis for the simultaneous removal of NO3--N and S2--S, as well as the accumulation of nitrite, and provided material support for anaerobic ammonia oxidation technology.A facile method was used to prepare two-dimensional MXene for the treatment of heavy metal ions in wastewater. The adsorbent has good selectivity for the adsorption of Hg (Ⅱ) in mixed divalent cationic metal solutions due to a large number of oxygen-containing functional groups on the surface of the material. The adsorption of mercury was tested using mercuric chloride and mercury nitrate solutions. The Langmuir maximum adsorption capacity of the adsorbent at a pH of 5.0 and a temperature of 30 °C is 1057.3 mg/g (mercuric nitrate) and 773.29 mg/g (mercuric chloride), respectively. The adsorbent also maintains a high adsorption capacity at low pH (pH = 2.0). The removal rate of mercury-containing wastewater within 100 mg/L is nearly 100%. The chemical species of Hg-containing ions at different pH and temperatures was studied. It was found that the adsorbent could maintain a high adsorption capacity for different forms of Hg-containing ions.Microplastics (MPs) contamination is an existing and concerning environmental issue. Plastic particles have been observed worldwide in every natural matrix, with water environments being the final sink of dispersed MPs. Microplastic distribution in water ecosystems varies as a function of multiple factors, including polymer properties (e.g., density and wettability) and environmental conditions (e.g., water currents and temperature). Because of the tendency of MPs to settle, sediment is known to be one of the most impacted environmental matrices. Despite the increasing awareness of their diffusion in sediments, a proper quantification of dispersed particles is still difficult, due to the lack of standard protocols, which avoid a proper comparison of different sites. This hampers the current knowledge on environmental implications and toxicological effects of MPs in sediments. In this work, we examined 49 studies carried out from 2004 to 2020 to describe the different extraction methods applied, and to highlight pros and cons, with the aim of evaluating the more promising protocols. Therefore, we evaluated each proposed method by considering precision, reproducibility, economic viability and greenness (in term of used reagents). Finally, we proposed a valid alternative procedure in term of reliability and costs, which can attract increasing interest for future studies.In this study, according to the classification of biological "classes" and the different trophic levels of the food web, the distribution characteristics, bioaccumulation of heavy metals (HMs) and their trophic transfer in the food web of typical grassland ecosystems were studied and predicted. The results indicated that the accumulation of toxic As was the highest in small mammals and reptiles, Cu was the highest in insects, and the micronutrient Zn in large mammals was higher than that in plants. The metal transfer factor (MTF) by plants at the first trophic level showed that Leymus chinensis had the best ability to absorb HMs from soil. The trophic transfer factor (TTF) of HMs in the second-trophic level insects, birds and some mammals were Zn > As > Cu > Ni > Pb > Co = Cr > Mn > V, in which, biomagnified on Zn, As, and Cu. Organisms at the third trophic level including birds, reptiles and some mammals had the strongest accumulation ability for Pb, V and As, and all were biomagnified. The biomagnification on As and Co of the fourth trophic level Siberian weasel was obviously higher than that of Dione's rat-snake, which had significant biomagnification effect on As by preying on Steppe toad-headed agama. The study showed that the bioaccumulation levels of HMs in organisms at different trophic levels varied significantly with species, prey, and organ type, but they all showed strong bioaccumulation capacity to toxic As, which indicated that As could produce certain toxic effects on animals in the food web through trophic transfer. Taletrectinib mw In addition, organisms at low-trophic levels were more likely to biomagnify Zn, while organisms at high-trophic levels were more likely to biodilute Pb.Based on the Cr, Pb, Zn, Cd, and As content and grain data from the surface sediments of 56 sampling sites in the coastal waters off the northern Shandong Peninsula, the distribution characteristics of heavy metals in sediments were analyzed, and the sources of these elements were discussed. The results show that the distributions of Cr, Pb, and Zn were similar to each other, while the distributions of As and Cd differed from the other three, with Cr, Pb, Cd, and As all showing high concentrations in the Dengzhou shoal. Cr, Pb, and Zn, which are controlled by fine-grained components of surface sediments, mainly originated from natural processes, As mainly originated from aquaculture, and Cd originated from both natural and human sources. The high concentrations of heavy metals were mostly in areas of residual current convergence and coastal current action, and the distribution of heavy metals can be well correlated to the sedimentary dynamic environment. Human activities, grain size and hydrodynamic conditions are therefore important factors that influence the distribution of heavy metals in this study area.

Autoři článku: Mosleyanthony5184 (Swain Dissing)