Pottssherwood3468

Z Iurium Wiki

Verze z 21. 10. 2024, 11:02, kterou vytvořil Pottssherwood3468 (diskuse | příspěvky) (Založena nová stránka s textem „Cultured iPSC-DMs can be activated to different macrophage states that display altered gene expression and phagocytic activity by the addition of LPS…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Cultured iPSC-DMs can be activated to different macrophage states that display altered gene expression and phagocytic activity by the addition of LPS and IFNg, IL4, or IL10. Thus, this system provides a platform to generate human macrophages carrying genetic alterations that model specific human disease and a source of cells for drug screening or cell therapy to treat these diseases.Lignocellulosic materials are plant-derived feedstocks, such as crop residues (e.g., corn stover, rice straw, and sugar cane bagasse) and purpose-grown energy crops (e.g., miscanthus, and switchgrass) that are available in large quantities to produce biofuels, biochemicals, and animal feed. Plant polysaccharides (i.e., cellulose, hemicellulose, and pectin) embedded within cell walls are highly recalcitrant towards conversion into useful products. Ammonia fiber expansion (AFEX) is a thermochemical pretreatment that increases accessibility of polysaccharides to enzymes for hydrolysis into fermentable sugars. These released sugars can be converted into fuels and chemicals in a biorefinery. Here, we describe a laboratory-scale batch AFEX process to produce pretreated biomass on the gram-scale without any ammonia recycling. The laboratory-scale process can be used to identify optimal pretreatment conditions (e.g., ammonia loading, water loading, biomass loading, temperature, pressure, residence time, etc.) and generates sufficient quantities of pretreated samples for detailed physicochemical characterization and enzymatic/microbial analysis. The yield of fermentable sugars from enzymatic hydrolysis of corn stover pretreated using the laboratory-scale AFEX process is comparable to pilot-scale AFEX process under similar pretreatment conditions. This paper is intended to provide a detailed standard operating procedure for the safe and consistent operation of laboratory-scale reactors for performing AFEX pretreatment of lignocellulosic biomass.We describe a novel esophagogastric anastomotic technique ("side-to-side staple line-on-staple line", STS) for intrathoracic anastomoses designed to create a large diameter anastomosis while simultaneously maintaining conduit blood supply. This technique aims to minimize the incidence of anastomotic leaks and strictures, which is a frequent source of morbidity and occasional mortality after esophagectomy. We analyze the results of this STS technique on 368 patients and compared outcomes to 112 patients who underwent esophagogastric anastomoses using an end-to-end stapler (EEA) over an 8-year time interval at our institution. The STS technique involves aligning the remaining intrathoracic esophagus over the tip of the lesser curve staple line of a stomach tube, created as a replacement conduit for the esophagus. A linear stapling device cuts through and restaples the conduit staple line to the lateral wall of the esophagus in a side-to-side fashion. The open common lumen is then closed in two layers of suturesomotic technique. Additionally we believe that based on time and qualitative analyses of postoperative contrast studies, this technique appears to optimize postoperative upper gastrointestinal tract function; however, further comparative studies are needed.In this work, we describe a protocol for a novel application of hyperspectral imaging (HSI) in the analysis of luminescent lanthanide (Ln3+)-based molecular single crystals. As representative example, we chose a single crystal of the heterodinuclear Ln-based complex [TbEu(bpm)(tfaa)6] (bpm=2,2'-bipyrimidine, tfaa- =1,1,1-trifluoroacetylacetonate) exhibiting bright visible emission under UV excitation. HSI is an emerging technique that combines 2-dimensional spatial imaging of a luminescent structure with spectral information from each pixel of the obtained image. Specifically, HSI on single crystals of the [Tb-Eu] complex provided local spectral information unveiling variation of the luminescence intensity at different points along the studied crystals. These changes were attributed to the optical anisotropy present in the crystal, which results from the different molecular packing of Ln3+ ions in each one of the directions of the crystal structure. The HSI herein described is an example of the suitability of such technique for spectro-spatial investigations of molecular materials. Yet, importantly, this protocol can be easily extended for other types of luminescent materials (such as micron-sized molecular crystals, inorganic microparticles, nanoparticles in biological tissues, or labelled cells, among others), opening many possibilities for deeper investigation of structure-property relationships. Ultimately, such investigations will provide knowledge to be leveraged into the engineering of advanced materials for a wide range of applications from bioimaging to technological applications, such as waveguides or optoelectronic devices.While both living donation and donation after circulatory death provide alternative opportunities for organ transplantation, donation after donor brain death (BD) still represents the major source for solid transplants. Unfortunately, the irreversible loss of brain function is known to induce multiple pathophysiological changes, including hemodynamic as well as hormonal modifications, finally leading to a systemic inflammatory response. Models that allow a systematic investigation of these effects in vivo are scarce. We present a murine model of BD induction, which could aid investigations into the devastating effects of BD on allograft quality. After implementing intra-arterial blood pressure measurement via the common carotid artery and reliable ventilation via a tracheostomy, BD is induced by steadily increasing intracranial pressure using a balloon catheter. Four hours after BD induction, organs may be harvested for analysis or for further transplantation procedures. Our strategy enables the comprehensive analysis of donor BD in a murine model, therefore allowing an in-depth understanding of BD-related effects in solid organ transplantation and potentially paving the way to optimized organ preconditioning.Hepatic de novo lipogenesis is a major contributor to nonalcoholic fatty liver disease (NAFLD). In this issue of the JCI, Liu and Lin et al. identified Slug as an epigenetic regulator of lipogenesis. Their findings suggest that Slug is stabilized by insulin signaling, and that it promotes lipogenesis by recruiting the histone demethylase Lsd1 to the fatty acid synthase gene promoter. On the other hand, genetic deletion or acute depletion of Slug, or Lsd1 inhibition, reduced lipogenesis and protected against obesity-associated NAFLD and insulin resistance in mice. This study advances our understanding of how lipogenesis is regulated downstream of insulin signaling in health and disease.Herpesviruses infect virtually all humans and establish lifelong latency and reactivate to infect other humans. Latency requires multiple functions maintaining the herpesvirus genome in the nuclei of cells; partitioning the viral genome to daughter cells in dividing cells; avoiding recognition by the immune system by limiting protein expression; producing noncoding viral RNAs (including microRNAs) to suppress lytic gene expression or regulate cellular protein expression that could otherwise eliminate virus-infected cells; modulating the epigenetic state of the viral genome to regulate viral gene expression; and reactivating to infect other hosts. Licensed antivirals inhibit virus replication, but do not affect latency. Understanding of the mechanisms of latency is leading to novel approaches to destroy latently infected cells or inhibit reactivation from latency.Patients with respiratory syncytial virus (RSV) infection exhibit enhanced susceptibility to subsequent pneumococcal infections. However, the underlying mechanisms involved in this increased susceptibility remain unclear. Here, we identified potentially novel cellular and molecular cascades triggered by RSV infection to exacerbate secondary pneumococcal pneumonia. RSV infection stimulated the local production of growth arrest-specific 6 (Gas6). The Gas6 receptor Axl was crucial for attenuating pneumococcal immunity in that the Gas6/Axl blockade fully restored antibacterial immunity. Hesperadin Mechanistically, Gas6/Axl interaction regulated the conversion of alveolar macrophages from an antibacterial phenotype to an M2-like phenotype that did not exhibit antibacterial activity, and the attenuation of caspase-1 activation and IL-18 production in response to pneumococcal infection. The attenuated IL-18 production failed to drive both NK cell-mediated IFN-γ production and local NO and TNF-α production, which impair the control of bacterial infection. Hence, the RSV-mediated Gas6/Axl activity attenuates the macrophage-mediated protection against pneumococcal infection. The Gas6/Axl axis could be a potentially novel therapeutic target for RSV-associated secondary bacterial infection.Acute myeloid leukemia (AML) disrupts the generation of normal blood cells, predisposing patients to hemorrhage, anemia, and infections. Differentiation and proliferation of residual normal hematopoietic stem and progenitor cells (HSPCs) are impeded in AML-infiltrated bone marrow (BM). The underlying mechanisms and interactions of residual hematopoietic stem cells (HSCs) within the leukemic niche are poorly understood, especially in the human context. To mimic AML infiltration and dissect the cellular crosstalk in human BM, we established humanized ex vivo and in vivo niche models comprising AML cells, normal HSPCs, and mesenchymal stromal cells (MSCs). Both models replicated the suppression of phenotypically defined HSPC differentiation without affecting their viability. As occurs in AML patients, the majority of HSPCs were quiescent and showed enrichment of functional HSCs. HSPC suppression was largely dependent on secreted factors produced by transcriptionally remodeled MSCs. Secretome analysis and functional validation revealed MSC-derived stanniocalcin 1 (STC1) and its transcriptional regulator HIF-1α as limiting factors for HSPC proliferation. Abrogation of either STC1 or HIF-1α alleviated HSPC suppression by AML. This study provides a humanized model to study the crosstalk among HSPCs, leukemia, and their MSC niche, and a molecular mechanism whereby AML impairs normal hematopoiesis by remodeling the mesenchymal niche.Transcriptional reactivation of telomerase catalytic subunit (TERT) is a frequent hallmark of cancer, occurring in 90% of human malignancies. However, specific mechanisms driving TERT reactivation remain obscure for many tumor types and in particular gastric cancer (GC), a leading cause of global cancer mortality. Here, through comprehensive genomic and epigenomic analysis of primary GCs and GC cell lines, we identified the transcription factor early B cell factor 1 (EBF1) as a TERT transcriptional repressor and inactivation of EBF1 function as a major cause of TERT upregulation. Abolishment of EBF1 function occurs through 3 distinct (epi)genomic mechanisms. First, EBF1 is epigenetically silenced via DNA methyltransferase, polycomb-repressive complex 2 (PRC2), and histone deacetylase activity in GCs. Second, recurrent, somatic, and heterozygous EBF1 DNA-binding domain mutations result in the production of dominant-negative EBF1 isoforms. Third, more rarely, genomic deletions and rearrangements proximal to the TERT promoter remobilize or abolish EBF1-binding sites, derepressing TERT and leading to high TERT expression.

Autoři článku: Pottssherwood3468 (Levy Binderup)