Kilicbruce4779

Z Iurium Wiki

Verze z 21. 10. 2024, 10:50, kterou vytvořil Kilicbruce4779 (diskuse | příspěvky) (Založena nová stránka s textem „Trained endurance runners appear to fine-tune running mechanics to minimize metabolic cost. Referred to as self-optimization, the support for this concept…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Trained endurance runners appear to fine-tune running mechanics to minimize metabolic cost. Referred to as self-optimization, the support for this concept has primarily been collated from only a few gait (e.g., stride frequency, length) and physiological (e.g., oxygen consumption, heart rate) characteristics. To extend our understanding, the aim of this study was to examine the effect of manipulating ground contact time on the metabolic cost of running in trained endurance runners. Additionally, the relationships between metabolic cost, and leg stiffness and perceived effort were examined. Ten participants completed 5 × 6-min treadmill running conditions. Self-selected ground contact time and step frequency were determined during habitual running, which was followed by ground contact times being increased or decreased in four subsequent conditions whilst maintaining step frequency (2.67 ± 0.15 Hz). The same self-selected running velocity was used across all conditions for each participant (12.7 ± 1.6 km · h-1self-optimized characteristics, as trained runners were operating at or close to their mathematical optimal. The majority of runners favored a self-selected gait that may rely on elastic energy storage and release due to shorter ground contact times and higher leg stiffness's than optimal. Using RPE as a surrogate measure of metabolic cost during manipulated running gait is not recommended.Mowat-Wilson syndrome (MWS) is a rare genetic disorder characterized by intellectual disability, distinctive facial features, epilepsy, and multiple anomalies caused by heterozygous loss-of-function mutations in the zinc finger E-box-binding homeobox-2 gene (ZEB2). Treatment choice is very important as patients with MWS because patients sometimes develop drug-resistant epilepsy. Here, we report the case of a 45-year-old male patient with MWS who developed drug-resistant status epilepticus after a 26-years seizure-free period while taking multiple anti-seizure medications. He showed a characteristic magnetic resonance imaging finding with a focal lesion in his left thalamic pulvinar nucleus, a finding not previously reported in status epilepticus with MWS. We succeeded in controlling seizures in the patient after trying multiple new antiseizure drug combinations. These findings indicate that patients with MWS may develop drug-resistant status epilepticus with age, even after a long-term seizure-free period, which can be managed with anti-seizure medication. Therefore, careful monitoring of seizures is important for the treatment of people with MWS, even in patients who have not experienced seizures for a long time.Traumatic brain injury (TBI) involves complex secondary injury processes following the primary injury. The secondary injury is often associated with rapid metabolic shifts and impaired brain function immediately after the initial tissue damage. Magnetic resonance spectroscopic imaging (MRSI) coupled with hyperpolarization of 13C-labeled substrates provides a unique opportunity to map the metabolic changes in the brain after traumatic injury in real-time without invasive procedures. In this report, we investigated two patients with acute mild TBI (Glasgow coma scale 15) but no anatomical brain injury or hemorrhage. Patients were imaged with hyperpolarized [1-13C]pyruvate MRSI 1 or 6 days after head trauma. Both patients showed significantly reduced bicarbonate (HCO3-) production, and one showed hyperintense lactate production at the injured sites. This study reports the feasibility of imaging altered metabolism using hyperpolarized pyruvate in patients with TBI, demonstrating the translatability and sensitivity of the technology to cerebral metabolic changes after mild TBI.Holography was originally invented for the purpose of magnifying electron microscopic images without spherical aberration and has been applied to photography for recording and reconstructing three-dimensional objects. Although it has been attracting scientists and ordinary people in the world, it is still a technology in science fiction movies. In this review, we discuss a new version of holography that uses surface plasmons on thin metal film. We discuss conventional holography and its drawbacks, such as overlapping of ghost and background due to the contribution of unnecessary diffraction and monochromacy for avoiding the unwanted diffraction components of different colors. Surface-plasmon holography is a version of near-field holography to overcome drawbacks of conventional holography. Comparison with conventional and volume holography for color reconstruction is discussed in reciprocal lattice space. Localized mode of surface plasmons and meta-surface holography are also reviewed, and feature perspectives and issues are discussed.Recent studies have begun to highlight the diverse and tumor-specific microbiomes across multiple cancer types. We believe this work raises the important question of whether the classical "Hallmarks of Cancer" should be expanded to include tumor microbiomes. To answer this question, the causal relationships and co-evolution of these microbiotic tumor ecosystems must be better understood. Because host-microbe interactions should be studied in a physiologically relevant context, animal models have been preferred. Yet these models are often poor mimics of human tumors and are difficult to interrogate at high spatiotemporal resolution. We believe that in vitro tissue engineered platforms could provide a powerful alternative approach that combines the high-resolution of in vitro studies with a high degree of physiological relevance. Artenimol supplier This review will focus on tissue engineered approaches to study host-microbe interactions and to establish their role as an emerging hallmark of cancer with potential as a therapeutic target.As technology advances, electrical devices such as smartphones have become more and more compact, leading to a demand for the continuous miniaturization of optical components. Metalenses, ultrathin flat optical elements composed of metasurfaces consisting of arrays of subwavelength optical antennas, provide a method of meeting those requirements. Moreover, metalenses have many other distinctive advantages including aberration correction, active tunability, and semi-transparency, compared to their conventional refractive and diffractive counterparts. Therefore, over the last decade, great effort has been focused on developing metalenses to investigate and broaden the capabilities of metalenses for integration into future applications. Here, we discuss recent progress on metalenses including their basic design principles and notable characteristics such as aberration correction, tunability, and multifunctionality.

Autoři článku: Kilicbruce4779 (Cameron Damgaard)