Olssonleslie3858

Z Iurium Wiki

Verze z 21. 10. 2024, 00:15, kterou vytvořil Olssonleslie3858 (diskuse | příspěvky) (Založena nová stránka s textem „Fe-based nanoparticles (Fe-based NPs) have great potential as a substitute for traditional Fe-fertilizer; however, their environmental risk and impact on p…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Fe-based nanoparticles (Fe-based NPs) have great potential as a substitute for traditional Fe-fertilizer; however, their environmental risk and impact on plant growth are not fully understood. In this study, we compared the physiological impacts of three different Fe-based NP formulations zero-valent iron (ZVI), Fe3O4 and Fe2O3 NPs, on hydroponic rice after root exposure for 2 weeks. Fe-normal (Fe(+)) and Fe-deficiency (Fe(-)) conditions were compared. Results showed that low dose (50 mg L-1) of ZVI and Fe3O4 NPs improved the rice growth under Fe(-) condition, while Fe2O3 NPs did not improve plant growth and caused phytotoxicity at high concentration (500 mg L-1). Under Fe(+) conditions, none of the Fe-based NPs exhibited positive effects on the rice plants with plant growth actually being inhibited at 500 mg L-1 evidenced by reduced root volume and leaf biomass and enhanced oxidative stress in plant. Under Fe(-) condition, low dose (50 mg L-1) of ZVI NPs and Fe3O4 NPs increased the chlorophyll content by 30.7% and 26.9%, respectively. They also alleviated plant stress demonstrated by the reduced oxidative stress and decreased concentrations of stress related phytohormones such as gibberellin and indole-3-acetic acid. Low dose of ZVI and Fe3O4 NPs treatments resulted in higher Fe accumulation in plants compared to Fe2O3 NPs treatment, by down-regulating the expression of IRT1 and YSL15. This study provides significant insights into the physiological impacts of Fe-based NPs in rice plants and their potential application in agriculture. ZVI and Fe3O4 NPs can be used as Fe-fertilizers to improve rice growth under Fe-deficient condition, which exist in many rice-growing regions of the world. However, dose should be carefully chosen as high dose (500 mg L-1 in this study) of the Fe-based NPs can impair rice growth.Lakes in arid regions are experiencing mercury pollution via air deposition and surface runoff, posing a threat to ecosystem safety and human health. Furthermore, salinity and organic matter input could influence the mercury cycle and composition of bacterial communities in the sediment. In this study, the effects of salinity and algae biomass as an important organic matter on the genes (merA and hgcA) involved in the mercury cycle under mercury contamination were investigated. Archaeal merA and hgcA were not detected in sediments of lake microcosms, indicating that bacteria rather than archaea played a crucial role in mercury reduction and methylation. The high content of mercury (300 ng g-1) could reduce the abundance of both merA and hgcA. The effects of salinity and algae biomass on mercury cycling genes depended on the gene type and dose. A higher input of algae biomass (250 mg L-1) led to an increase of merA abundance, but a decrease of hgcA abundance. All high inputs of mercury, salinity, and algae biomass decreased the richness and diversity of bacterial communities in sediment. Further analysis indicated that higher mercury (300 ng g-1) led to an increased relative abundance of mercury methylators, such as Ruminococcaceae, Bacteroidaceae, and Veillonellaceae. Under saline conditions (10 and 30 g L-1), the richness of specific bacteria associated with mercury reduction (Halomonadaceae) and methylation (Syntrophomonadaceae) increased compared to the control. The input of algae biomass led to an increase in the specific bacterial communities associated with the mercury cycle and the richness of bacteria involved in the decomposition of organic matter. These results provide insight into mercury cycle-related genes and bacterial communities in the sediments of lakes in arid regions.Prostate cancer exhibits a propensity to metastasize to the bone, which often leads to fatality. Bone metastasis is characterized by complex biochemical, morphological, pathophysiological, and genetic changes to cancer cells as they colonize at bone sites. In this study, we report the evaluation of MDA PCa2b prostate cancer cells' nanomechanical properties during the mesenchymal-to-epithelial transition (MET) and during disease progression at the metastatic site. Bone-mimetic tissue-engineered 3D nanoclay scaffolds have been used to create in vitro metastatic site for prostate cancer. selleckchem A significant softening of the prostate cancer cells during MET and further softening as disease progression occurs at metastasis is also reported. The significant reduction in elastic modulus of prostate cancer cells during MET was attributed to actin reorganization and depolymerization. This study provides input towards direct nanomechanical measurements to evaluate the time evolution of cells' mechanical behavior in tumors at bone metastasis site.Objectively assessing horse movement symmetry as an adjunctive to the routine lameness evaluation is on the rise with several commercially available systems on the market. Prerequisites for quantifying such symmetries include knowledge of the gait and gait events, such as hoof to ground contact patterns over consecutive strides. Extracting this information in a robust and reliable way is essential to accurately calculate many kinematic variables commonly used in the field. In this study, optical motion capture was used to measure 222 horses of various breeds, performing a total of 82 664 steps in walk and trot under different conditions, including soft, hard and treadmill surfaces as well as moving on a straight line and in circles. Features were extracted from the pelvis and withers vertical movement and from pelvic rotations. The features were then used in a quadratic discriminant analysis to classify gait and to detect if the left/right hind limb was in contact with the ground on a step by step basis. The predictive model achieved 99.98% accuracy on the test data of 120 horses and 21 845 steps, all measured under clinical conditions. One of the benefits of the proposed method is that it does not require the use of limb kinematics making it especially suited for clinical applications where ease of use and minimal error intervention are a priority. Future research could investigate the extension of this functionality to classify other gaits and validating the use of the algorithm for inertial measurement units.

Autoři článku: Olssonleslie3858 (Boone Alexandersen)