Fernandezcollins4815

Z Iurium Wiki

Verze z 20. 10. 2024, 23:35, kterou vytvořil Fernandezcollins4815 (diskuse | příspěvky) (Založena nová stránka s textem „Nowadays, estuarial areas have been strongly affected by the construction of electrical power dams from upstream, downstream urbanization and many types of…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Nowadays, estuarial areas have been strongly affected by the construction of electrical power dams from upstream, downstream urbanization and many types of hazards along the coastal regions. It has resulted in significant changes in estuarine wetland ecosystems between rainy and dry seasons. To avoid estuary vulnerability, monitoring and evaluation of the estuarine ecosystems are very critical tasks. The main goal of this research is to propose and implement a novel deep learning method in monitoring various ecosystems in estuarine regions. The processing speed and accuracy of common neural networks is improved more than ten times through spatial and context paths integrated into a novel Bilateral Segmentation Network (BiSeNet). The multi-sensor and multi-temporal satellite images (including Sentinel-2, ALOS-DEM, and NOAA-DEM images) served as input data. As a result, four BiSeNet models out of 20 trained models achieved a greater than 90% accuracy, especially for interpreting estuarine waters, intertidal forested wetlands, and aquacultural lands in subtidal regions. learn more These models outperformed Random Forest and Support Vector Machine approaches. The best one was used to map estuarine ecosystems from 12 satellite images over a five-year period in the largest estuary in northern Vietnam. The ecosystem changes between dry and rainy seasons were analyzed in detail to assess the ecological succession in estuaries. Furthermore, this model can potentially update new estuarine ecosystem types in other estuarine areas across the world, making possible real-time monitoring and assessing estuarine ecological conditions for sustainable management of wetland ecosystem.Recent drought events in the Mekong River Basin (MRB) have resulted in devastating environmental and economic losses, and climate change and human-induced alterations have exacerbated drought conditions. Using hydrologic models and multiple climate change scenarios, this study quantified the future climate change impacts on conventional and flash drought conditions in the MRB. The Soil and Water Assessment Tool (SWAT) and Variable Infiltration Capacity (VIC) models were applied to estimate long-term drought indices for conventional and flash drought conditions over historical and future periods (1966-2099), using two emission scenarios (RCP 4.5 and RCP8.5), and four climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For the conventional drought assessment, monthly scale drought indices were estimated, and pentad-scale (5 days) drought indices were computed for the flash drought evaluations. There were overall increases in droughts from the SWAT model for the conventional drought conditions and overall decreases from the VIC model. For the flash drought conditions, the SWAT-driven drought indices showed overall increases in drought occurrences (up to 165%). On the contrary, the VIC-driven drought indices presented decreases in drought occurrences (up to -44%). The conventional and flash drought evaluations differ between these models as they partition the water budget, specifically soil moisture differently. We conclude that the proposed framework, which includes hydrologic models, various emission scenarios, and projections, allows us to assess the various perspectives on drought conditions. Basin countries have differential impacts, so targeted future adaptation strategy is required.Trace elements in the blood of crocodilians and the factors that influence their concentrations are overall poorly documented. However, determination of influencing factors is crucial to assess the relevance of caimans as bioindicators of environmental contamination, and potential toxicological impact of trace elements on these reptiles. In the present study, we determined the concentrations of 14 trace elements (Ag, As, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Ni, Se, V, and Zn) in the blood of four French Guiana caiman species (the Spectacled Caiman Caiman crocodilus [n = 34], the Black Caiman Melanosuchus niger [n = 25], the Dwarf Caiman Paleosuchus palpebrosus [n = 5] and the Smooth-fronted Caiman Paleosuchus trigonatus [n = 20]) from 8 different sites, and further investigated the influence of individual body size and stable isotopes as proxies of foraging habitat and trophic position on trace element concentrations. Trophic position was identified to be an important factor influencing trace element concentrations in the four caiman species and explained interspecific variations. These findings highlight the need to consider trophic ecology when crocodilians are used as bioindicators of trace element contamination in environmental studies.Volcanic lakes in oceanic islands represent extremely important areas for biodiversity and offer exceptional conditions for nature-based tourism as one of the main pillars of economic growth in these regions. Nitrogen and phosphorus fertilizers are being used extensively at the Azores archipelago, similarly to other places in the world, to increase agricultural production and is causing severe pollution and eutrophication of surface freshwater reservoirs. This work concentrates on the evaluation of the efficiency of surface water diversion as a remediation measure to reduce nutrient loading and reverse eutrophication of Furnas crater lake on the island of São Miguel. Nutrient loading was monitored using an extensive water quality monitoring program in the main watershed of the eutrophicated lake that, together with watershed-scale mass balance methods and groundwater and solute transport models, allowed us to identify an average 98% efficiency in the reduction of nitrate loading. However, phosphorus total load in the discharged water to Furnas lake was observed to only be decreased by 33% due to the groundwater origin of phosphorus. Results from modelling suggested that nutrients were emitted from both point (nitrates) and diffuse (phosphorus) sources as surface runoff and as groundwater seepage, respectively. The results obtained recognized a partially successful surface water diversion, since groundwater path was not initially identified, thus highlighting the importance of groundwater flow regime in the design of such remediation measures. This work also provides a perspective on surface water diversion to revert eutrophication under a volcanic formation, where lakes can be naturally more nutrient rich.The world has been grappling with the crisis of the COVID-19 pandemic for more than a year. Various sectors have been affected by COVID-19 and its consequences. The waste management system is one of the sectors affected by such unpredictable pandemics. The experience of COVID-19 proved that adaptability to such pandemics and the post-pandemic era had become a necessity in waste management systems and this requires an accurate understanding of the challenges that have been arising. The accurate information and data from most countries severely affected by the pandemic are not still available to identify the key challenges during and post-COVID-19. The documented evidence from literature has been collected, and the attempt has been made to summarize the rising challenges and the lessons learned. This review covers all raised challenges concerning the various aspects of the waste management system from generation to final disposal (i.e., generation, storage, collection, transportation, processing, and burial of waste). The necessities and opportunities are recognized for increasing flexibility and adaptability in waste management systems. The four basic pillars are enumerated to adapt the waste management system to the COVID-19 pandemic and post-COVID-19 conditions. Striving to support and implement a circular economy is one of its basic strategies.

Transportation noise is second only to air pollution as an environmental contributor to adverse health outcomes in Western countries. However, no studies investigated the association between road traffic noise and behavioral problems among schoolchildren in China.

To investigate the association between exposure to road traffic noise at home and behavioral problems in Chinese schoolchildren.

From January to June 2017, we screened 3236 children aged 7-13 years in Guangzhou (Guangdong, China) from the first investigation of an ongoing school-based cohort study with complete information on behavioral problems and residential geolocation. Residential road traffic noise exposure levels were assessed using a validated modeling method in different periods of the day, including daytime (L

), nighttime (L

), and weighted 24-hr (L

). The annual mean concentration of nitrogen dioxide was also modeled in our study. Behavioral problems were assessed by the parent-rated Strengths and Difficulties Questionnaire (SDQduct problems.

Residential road traffic noise exposure might be related to increased behavioral problems in Chinese schoolchildren, such as emotional symptoms and conduct problems.Although several studies are confirming the ubiquity of microplastics (MPs) in environments, our knowledge about their effects on human health is still very limited. Therefore, while we have not gathered definitive information on their consequences, studies that aim to identify the MPs sources constitute subsidies to better understand the various exposure pathways to these pollutants. Thus, we investigated the possible presence of MP-like particles in five brands of commercial sugars and two unpacked, unbranded, and unlabeled sugars (hereinafter referred to as "non-branded"), obtained from different supermarkets in Dhaka (Bangladesh). Surprisingly, MPs-like particles were identified in all analyzed samples and taken together, our data demonstrated similar variations (between branded and non-branded samples) in terms of number, size, shape, color, and polymer composition. The number of plastic particles/kg sugar was, on average, 343.7 ± 32.08 (mean ± SEM), having been observed a tendency for a higher frequency of MPs less then 300 μm. Overall, microfibers and spherules were the most and the predominant colors of MPs (in general) were black, pink, blue, and brown. The FT-IR analysis confirmed the chemical nature of MPs (in branded and non-branded), having identified nine polymeric types (ABS, PCV, PET, EVA, CA, PTFE, HDPE, PC, and nylon), being ABS and PVC the most frequent. Furthermore, we estimate that sugar consumption in Dhaka City can cause the ingestion of millions of tons of MPs annually (2.4 to 25.6 tons) (with an average of 10.2 tons). Our study is the most comprehensive report on the MP's occurrence in sugar, confirming that the ingestion of this food constitutes an important route of human exposure to these micropollutants and, therefore, serves as a baseline for future assessments and useful for generating efficient strategies to control MPs.Sensory preconditioned and second-order conditioned responding are each well-documented. The former occurs in subjects (typically rats) exposed to pairings of two relatively neutral stimuli, S2 and S1, and then to pairings of S1 and a motivationally significant event [an unconditioned stimulus (US)]; the latter occurs when the order of these experiences is reversed with rats being exposed to S1-US pairings and then to S2-S1 pairings. In both cases, rats respond when tested with S2 in a manner appropriate to the affective nature of the US, e.g., approach when the US is appetitive and withdrawal when it is aversive. This paper reviews the neural substrates of sensory preconditioning and second-order conditioning. It identifies commonalities and differences in the substrates of these so-called higher-order conditioning protocols and discusses these commonalities/differences in relation to what is learned. In so doing, the review highlights ways in which these types of conditioning enhance our understanding of how the brain encodes and retrieves different types of information to generate appropriate behavior.

Autoři článku: Fernandezcollins4815 (Nieves Lundgaard)