Langhoffmikkelsen2362
Findings / Results ACSL4 expression was significantly higher in BC tissues compared to the adjacent normal tissue. This upregulation was negatively correlated with Ki-67 and age, and positively correlated with p53 status. The correlation between ACSL4 and p53 may indicate the role of p53 in the regulation of lipid metabolism in cancer cells, in addition to its role in the regulation of ferroptosis cell death. Conclusion and implications Our results indicated that the expression of ACSL4 may be considered as a prognostic indicator and potential therapeutic target in BC. However, further studies are needed to confirm the significance of these findings. Copyright © 2020 Research in Pharmaceutical Sciences.Background and purpose Because of the high prevalence, diabetes is considered a global health threat. Hence, the need for effective, cheap, and comfortable therapies are highly felt. In previous study, a novel oligosaccharide with strong anti-diabetic activity in the crude extract of Rosa canina fruits, from the rosacea family, was identified. The present study was designed to ensure its efficacy using in vivo and in vitro studies. Experimental approach Crude extract and its purified oligosaccharide were prepared from corresponding herb. Adult male Wistar rats were randomly divided into four groups of 10 each, as follows group 1, healthy control rats given only sterile normal saline; group 2, diabetic control rats received sterile normal saline; group 3, diabetic rats treated with crude extract of Rosa canina (40% w/v) by oral gavage for 8 weeks; group 4, diabetic rats treated with purified oligosaccharide of Rosa canina (2 mg/kg) by oral gavage for 8 weeks. After treatment, body weight, fasting blood glucosehe glucose transporter 2, was significantly reduced due to insulin concentrations. Conclusion and implications The purified oligosaccharide from Rosa canina was a reliable anti-diabetic agent, which acted by increasing insulin production in beta-cells of the islands of Langerhans. Copyright © 2020 Research in Pharmaceutical Sciences.Background and purpose In the present study, we tried for the first time to examine whether cinnamaldehyde (CA), with herbal nature, can be co-administrated with doxorubicin (DOX, as an anticancer drug) toward U87MG glioblastoma cells to potentiate its cytotoxic effect and overcome or reduce its side effects. Experimental approach The cytotoxic effect of DOX and CA, either individually or in combination, were evaluated on U87MG cells using the MTT method. The mechanism of action was studied by investigating the mode of cell death using caspase-3 and 9 activations, mitochondrial membrane potential (MMP) as well as sub G1 analysis. The expression of apoptosis- related genes (Bcl-2 and Bax) was also examined. Findings / Results Cellular toxicity assay revealed that CA and DOX can potentially reduce the viability of U87MG cells with IC50 at 11.6 and 5 μg/mL, respectively. Exposure with the combination of CA and DOX significantly increased cytotoxic effect of DOX on U87MG cells. The results of SUBG1, MMP, and also caspase-3 and -9 activity assays, in association with the results corresponding to the Bax and Bcl-2 gene expressions, altogether revealed that CA can induce apoptosis on U87MG cells. Moreover, apoptogenic effects of DOX were found to be potentiated by CA. Conclusion and implications The results of this study revealed the promising cytotoxic and apoptogenic role of CA on U87MG cells. Additionally, our findings demonstrated that CA is able to enhance the apoptosis induced by DOX on human glioblastoma cells. Collectively, these data suggested that co-exposure of CA and DOX could be effective for treatment of glioblastoma, but further in vivo and clinical studies are still needed to prove these results. Copyright © 2020 Research in Pharmaceutical Sciences.Background and purpose Carbohydrate hydrolysis enzymes including α-glucosidase and α-amylase are related to type 2 diabetes mellitus. The inhibiting of these enzymes might use for type 2 diabetes mellitus treatment. Experimental approach N-substituted-acetylpyrrolidine linked with -benzyl- (N-(benzyl)-2-acetylpyrrolidine (4a)) and -tosyl- (N-(tosyl)-2-acetylpyrrolidine (4b)) were synthesized and evaluated for their pharmaceutical properties against α-glucosidase and α-amylase and free radical scavenging activity. The structures of 4a and 4b were determined through spectral studies (1H-NMR). Findings / Results Both compounds 4a and 4b had highest inhibitory potential on α-glucosidase with the IC50 values of 0.52 ± 0.02 and 1.64 ± 0.08 mM, respectively. The kinetic investigation of 4a and 4b against α-glucosidase and α-amylase were functioned in mixed type inhibition. Moreover, both compounds are more likely to bind with the free enzyme than the enzyme-substrate complex based on the Ki less then Ki´ on the α-glucosidase and α-amylase enzymes. Regarding the free radical scavenging, 4a had a higher capacity than 4b with IC50 values of 1.01 ± 0.010 mM for 4a and 1.82 ± 0.048 mM for 4b. Conclusion and implications Our results indicated that a derivative of N-substitute-acetylpyrrolidine had high potential to inhibit α-glucosidase and α-amylase, and their free radical scavenging properties might be applied to the therapeutic care of patients with type 2 diabetes mellitus. selleck compound Copyright © 2020 Research in Pharmaceutical Sciences.Background and purpose A simple, rapid, and sensitive reversed-phase high performance liquid chromatography (RP-HPLC) method based on liquid-liquid extraction was developed and validated for determination of docetaxel (DTX) in plasma and homogenate tissues of tumor-bearing mice. Experimental approach Samples were spiked with celecoxib as the internal standard and separation was achieved on a μ-Bondapak C18 HPLC column. The mobile phase consisted of a mixture of acetonitrile/water (40/60 v/v) at flow rate of 1.2 mL/min and the effluent was monitored at 230 nm. Results Calibration curves were linear over the concentration range of 0.1-10 μg/mL of DTX in plasma and 0.25-50 μg/mL in tissue homogenates with acceptable precision and accuracy. The mean recoveries of the drug from plasma extraction was 94.6 ± 1.44% while those of tissue homogenates ranged from 73.5 ± 3.2 to 85.3 ± 2.8% depending on the type of tissues examined. DTX was stable in biological samples with no evidence of degradation during 3 freeze-thaw cycles and two months of storage at -70 ± 15 °C.