Lamberthesselberg9270

Z Iurium Wiki

Verze z 20. 10. 2024, 14:09, kterou vytvořil Lamberthesselberg9270 (diskuse | příspěvky) (Založena nová stránka s textem „Deciphering these pathways will facilitate a better understanding of how perturbed gut microbiota contributes to the dysfunction of astrocytes and open the…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Deciphering these pathways will facilitate a better understanding of how perturbed gut microbiota contributes to the dysfunction of astrocytes and open therapeutic opportunities for the treatment of brain diseases.

Alzheimer's disease (AD) affects several people worldwide and has devastating impacts on society with a limited number of approaches for its pharmacological treatment. The main causes of AD are not clear yet. However, the formation of senile plaques, neurofibrillary tangles, hyper-phosphorylation of tau protein, and disruption of redox homeostasis may cause AD. These causes have a positive correlation with oxidative stress, producing reactive ions, which are responsible for altering the physiological condition of the body.

Ongoing research recommended the use of phytochemicals as acetylcholinesterase inhibitors to hinder the onset and progression of AD. The natural compound structures, including lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids have anti-inflammatory, antioxidant, and anti-amyloidogenic properties. The purpose of this article is to provide a brief introduction to AD along with the use of natural compounds as new therapeutic approaches for its management.

Ongoing research recommended the use of phytochemicals as acetylcholinesterase inhibitors to hinder the onset and progression of AD. The natural compound structures, including lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids have anti-inflammatory, antioxidant, and anti-amyloidogenic properties. The purpose of this article is to provide a brief introduction to AD along with the use of natural compounds as new therapeutic approaches for its management.Schizophrenia pathophysiology is associated with hypofunction of glutamate NMDA receptors (NMDAR) in GABAergic interneurons and dopaminergic hyperactivation in subcortical brain areas. The administration of NMDAR antagonists is used as an animal model that replicates behavioral phenotypes relevant to the positive, negative, and cognitive symptoms of schizophrenia. Such models overwhelmingly rely on rodents, which may lead to species-specific biases and poor translatability. Zebrafish, however, is increasingly used as a model organism to study evolutionarily conserved aspects of behavior. We thus aimed to review and integrate the major findings reported in the zebrafish literature regarding the behavioral effects of NMDAR antagonists with relevance to schizophrenia. We identified 44 research articles that met our inclusion criteria from 590 studies retrieved from MEDLINE (PubMed) and Web of Science databases. Dizocilpine (MK-801) and ketamine were employed in 29 and 10 studies, respectively. The use of other NMDAR antagonists, such as phencyclidine (PCP), APV, memantine, and tiletamine, was described in 6 studies. Frequently reported findings are the social interaction and memory deficits induced by MK-801 and circling behavior induced by ketamine. However, mixed results were described for several locomotor and exploratory parameters in the novel tank and open tank tests. The present review integrates the most relevant results while discussing variation in experimental design and methodological procedures. We conclude that zebrafish is a suitable model organism to study drug-induced behavioral phenotypes relevant to schizophrenia. However, more studies are necessary to further characterize the major differences in behavior as compared to mammals.General anesthetics are a mainstay of modern medicine, and although much progress has been made towards identifying molecular targets of anesthetics and neural networks contributing to endpoints of general anesthesia, our understanding of how anesthetics work remains unclear. Reducing this knowledge gap is of fundamental importance to prevent unwanted and life-threatening side-effects associated with general anesthesia. General anesthetics are chemically diverse, yet they all have similar behavioral endpoints, and so for decades, research has sought to identify a single underlying mechanism to explain how anesthetics work. However, this effort has given way to the 'multiple target hypothesis' as it has become clear that anesthetics target many cellular proteins, including GABAA receptors, glutamate receptors, voltage-independent K+ channels, and voltagedependent K+, Ca2+ and Na+ channels, to name a few. Yet, despite evidence that astrocytes are capable of modulating multiple aspects of neural function and express many anesthetic target proteins, they have been largely ignored as potential targets of anesthesia. The purpose of this brief review is to highlight the effects of anesthetic on astrocyte processes and identify potential roles of astrocytes in behavioral endpoints of anesthesia (hypnosis, amnesia, analgesia, and immobilization).Sleep-wake disturbances (SWD) are one of the most common non-motor symptoms in the Parkinson's disease (PD) and can appear in the early stage, even before the onset of motor symptoms. Deep brain stimulation (DBS) is an established treatment for the motor symptoms in patients with advanced PD. However, the effect of DBS on SWD and its specific mechanisms are not widely understood and remain controversial. In addition to the circuit-mediated direct effect, DBS may improve SWD by an indirect effect, such as the resolution of nocturnal motor complications and a reduction of dopaminergic medication. Here, the authors review the recent literatures regarding the impact of DBS on SWD in patients with PD. Furthermore, the selection of the DBS targets and the specific effects of applying DBS to each target on SWD in PD are also discussed.

Electrospinning is developing rapidly from an earlier laboratory method into an industrial process. The clinical applications of this technique are approached in various ways through electrospun medicated nanofibers. buy RP-102124 Fast-dissolving oral drug delivery systems (DDSs) have promising commercial applications in the near future.

Related papers have been investigated in this study, including the latest research results on electrospun nanofiber-based fast-dissolution DDSs.

The following related topics are concluded 1) development of electrospinning, ranging from one-fluid blending to multi-fluid process and potential applications in the formation of medicated nanofibers involving poorly water-soluble drugs; 2) selection of appropriate polymer matrices and drug carriers for filament formation; 3) types of poorly water-soluble drugs ideal for fast oral delivery; 4) methods for evaluating fast-dissolving nanofibers; 5) mechanisms that promote the fast dissolution of poorly water-soluble drugs by electrospun nanofibers; 6) and important issues related to further development of electrospun medicated nanofibers as oral fast-dissolving drug delivery systems.

Autoři článku: Lamberthesselberg9270 (Rodriguez Svenningsen)