Mckennaeriksen1702

Z Iurium Wiki

Verze z 20. 10. 2024, 13:17, kterou vytvořil Mckennaeriksen1702 (diskuse | příspěvky) (Založena nová stránka s textem „ed to a greater extent in aCD3/F/AN-treated T cells. Activation of fatty acid metabolism by aCD3/F/ANs supports the proliferation of T cells in a glucose-d…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

ed to a greater extent in aCD3/F/AN-treated T cells. Activation of fatty acid metabolism by aCD3/F/ANs supports the proliferation of T cells in a glucose-deficient environment mimicking the tumor microenvironment. Real-time video recordings show that aCD3/F/AN-treated T cells exerted an effector killing effect against B16F10 melanoma cells. In vivo administration of aCD3/F/ANs can increase infiltration of T cells into tumor tissues. The treatment of tumor-bearing mice with aCD3/F/ANs enhances production of various cytokines in tumor tissues and prevented tumor growth. Our findings suggest the potential of nanotechnology-enabled reprogramming of lipid metabolism in T cells as a new modality of immunometabolic therapy.In this work, we have developed a new method for manipulating and transferring up to 5 mm × 10 mm epitaxial oxide thin films. The method involves fixing a PET frame onto a PMMA attachment film, enabling transfer of epitaxial films lifted-off by wet chemical etching of a Sr3Al2O6 sacrificial layer. The crystallinity, surface morphology, continuity, and purity of the films are all preserved in the transfer process. We demonstrate the applicability of our method for three different film compositions and structures of thickness ~ 100 nm. Furthermore, we show that by using epitaxial nanocomposite films, lift-off yield is improved by ~ 50% compared to plain epitaxial films and we ascribe this effect to the higher fracture toughness of the composites. This work shows important steps towards large-scale perovskite thin-film-based electronic device applications.Exploring low-cost and earth-abundant oxygen reduction reaction (ORR) electrocatalyst is essential for fuel cells and metal-air batteries. Among them, non-metal nanocarbon with multiple advantages of low cost, abundance, high conductivity, good durability, and competitive activity has attracted intense interest in recent years. The enhanced ORR activities of the nanocarbons are normally thought to originate from heteroatom (e.g., N, B, P, or S) doping or various induced defects. However, in practice, carbon-based materials usually contain both dopants and defects. In this regard, in terms of the co-engineering of heteroatom doping and defect inducing, we present an overview of recent advances in developing non-metal carbon-based electrocatalysts for the ORR. The characteristics, ORR performance, and the related mechanism of these functionalized nanocarbons by heteroatom doping, defect inducing, and in particular their synergistic promotion effect are emphatically analyzed and discussed. Finally, the current issues and perspectives in developing carbon-based electrocatalysts from both of heteroatom doping and defect engineering are proposed. This review will be beneficial for the rational design and manufacturing of highly efficient carbon-based materials for electrocatalysis.Titanium dioxide (TiO2) has garnered attention for its promising photocatalytic activity, energy storage capability, low cost, high chemical stability, and nontoxicity. However, conventional TiO2 has low energy harvesting efficiency and charge separation ability, though the recently developed black TiO2 formed under high temperature or pressure has achieved elevated performance. The phase-selectively ordered/disordered blue TiO2 (BTO), which has visible-light absorption and efficient exciton disassociation, can be formed under normal pressure and temperature (NPT) conditions. This perspective article first discusses TiO2 materials development milestones and insights of the BTO structure and construction mechanism. Then, current applications of BTO and potential extensions are summarized and suggested, respectively, including hydrogen (H2) production, carbon dioxide (CO2) and nitrogen (N2) reduction, pollutant degradation, microbial disinfection, and energy storage. Last, future research prospects are proposed for BTO to advance energy and environmental sustainability by exploiting different strategies and aspects. The unique NPT-synthesized BTO can offer more societally beneficial applications if its potential is fully explored by the research community.Vanadium-based cathodes have attracted great interest in aqueous zinc ion batteries (AZIBs) due to their large capacities, good rate performance and facile synthesis in large scale. However, their practical application is greatly hampered by vanadium dissolution issue in conventional dilute electrolytes. Herein, taking a new potassium vanadate K0.486V2O5 (KVO) cathode with large interlayer spacing (~ 0.95 nm) and high capacity as an example, we propose that the cycle life of vanadates can be greatly upgraded in AZIBs by regulating the concentration of ZnCl2 electrolyte, but with no need to approach "water-in-salt" threshold. With the optimized moderate concentration of 15 m ZnCl2 electrolyte, the KVO exhibits the best cycling stability with ~ 95.02% capacity retention after 1400 cycles. We further design a novel sodium carboxymethyl cellulose (CMC)-moderate concentration ZnCl2 gel electrolyte with high ionic conductivity of 10.08 mS cm-1 for the first time and assemble a quasi-solid-state AZIB. This device is bendable with remarkable energy density (268.2 Wh kg-1), excellent stability (97.35% after 2800 cycles), low self-discharge rate, and good environmental (temperature, pressure) suitability, and is capable of powering small electronics. BX-795 PDK inhibitor The device also exhibits good electrochemical performance with high KVO mass loading (5 and 10 mg cm-2). Our work sheds light on the feasibility of using moderately concentrated electrolyte to address the stability issue of aqueous soluble electrode materials.Graphitic carbon nitride (g-C3N4)-based photocatalysts have shown great potential in the splitting of water. However, the intrinsic drawbacks of g-C3N4, such as low surface area, poor diffusion, and charge separation efficiency, remain as the bottleneck to achieve highly efficient hydrogen evolution. Here, a hollow oxygen-incorporated g-C3N4 nanosheet (OCN) with an improved surface area of 148.5 m2 g-1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere, wherein the C-O bonds are formed through two ways of physical adsorption and doping. The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects, leading to the formation of hollow morphology, while the O-doping results in reduced band gap of g-C3N4. The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6 μmol g-1 h-1 for ~ 20 h, which is over four times higher than that of g-C3N4 (850.1 μmol g-1 h-1) and outperforms most of the reported g-C3N4 catalysts.

Autoři článku: Mckennaeriksen1702 (Duggan Noonan)