Halegood0579

Z Iurium Wiki

Verze z 20. 10. 2024, 00:23, kterou vytvořil Halegood0579 (diskuse | příspěvky) (Založena nová stránka s textem „The relative recoveries were in the range of 63.1-119.4%.A sensitive and selective, aptamer and spectroscopic ellipsometry based sensor is reported here fo…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The relative recoveries were in the range of 63.1-119.4%.A sensitive and selective, aptamer and spectroscopic ellipsometry based sensor is reported here for the early diagnosis of breast cancer, which is a common type of cancer following lung cancer. It was aimed to develop a single-step and label-free assay for the sensitive and selective detection of VEGF165. To this end, two different aptamers and spectroscopic ellipsometry were used. In the presented study, by determining the appropriate aptamer immobilization conditions, the spectroscopic ellipsometry technique was successfully applied for the detection of VEGF165 at the range of 1 pM-1000 pM in the buffer. Aptasensors have a detection limit of 5.81 pM and 4.29 pM, respectively.Gastric cancer (GC) is a common malignant digestive tract tumor that leads to high mortality worldwide. Early diagnosis of GC is very important for adequate treatment. However, a rapid, specific and sensitive method for the detection of GC is currently not available. Here, a biosensor CPs/AuNP-AuE, the gold nanoparticle (AuNP)-modified Au electrode (AuE) which was coupled with DNA capture probes (CPs), was developed to detect the content of miR-100 in the sera of GC patients. The results showed that AuNPs were uniformly deposited on the surface of AuE. AuNPs enhanced the electrical conductivity and improved the effective area of AuE. CPs were successfully assembled on AuNP-AuE that could be digested by duplex-specific nuclease (DSN) from the miR-100/CPs complex on the electrode, improving the sensitivity of the biosensor by recycling miR-100. The data revealed that the biosensor was highly specific for the detection of miR-100, which had the ability to distinguish one base-pair mistake in miR-100. GSK484 clinical trial The detection of the biosensor for miR-100 ranged from 100 aM to 10 pM and the limit of detection (LOD) was estimated to be 100 aM. The detection results of 100 human sera samples using this biosensor indicated that the cutoff for the detection of gastric cancer was 5 fM. Therefore the biosensor developed in our study served as a rapid, specific and sensitive strategy for the detection of gastric cancer in clinic.Methods capable of sensitive and facile quantification of low-abundant proteins play critical roles in disease diagnosis and treatment. Herein, on a rationally designed aptamer-based hairpin structure-switching template, we developed a protein triggering exponential amplification reaction (PTEXPAR) method. The platelet-derived growth factor BB (PDGF-BB) is used as model analyte in the current proof-of-concept experiments. This method can detect PDGF-BB specifically with a detection limit as low as 4.9 fM. Additionally, the proposed PTEXPAR strategy allows label- and wash-free one-pot quantification of protein within ~35 min. Moreover, it is potentially universal because hairpin template can be easily designed for other proteins by changing the corresponding aptamer sequence.Suspect and non-targeted screening approaches are a matter of increasing interest notably with regard to the Exposome contextual framework, but their application to human samples still remains limited at this date. The aim of the present study was to develop a non-targeted workflow from sample preparation to data processing and method assessment to characterise the human internal chemical exposure at early life stage. The method was focused on human milk to investigate mother and newborn exposure to known organic contaminants and to extend the characterisation to unknown compounds. We specifically focused on halogenated biomarkers of exposure due to persistence and potential toxicological impact reasons. The newly developed approach was based on a simple and fast sample preparation followed by a comprehensive analysis by both liquid and gas phase chromatography coupled to high resolution mass spectrometry. Critical steps of the non-targeted workflow as the method assessment have been addressed with a reference mix of 30 chlorinated and brominated contaminants encompassing various substances groups and a statistical approach. Data processing until the identification of biomarkers of exposure was possible with homemade bioinformatics tools. On the other hand, the method was validated by the identification of historical chemicals as hexachlorobenzene and p,p'-DDE and emerging chemical as 4-hydroxychlorothalonil. This approach opens the door to further extensions and consolidations to offer new capabilities for exposomics and environmental health research.In modern times, viruses still threaten people's lives. Among them, norovirus was the main pathogenic factor in the cause of gastroenteritis and foodborne illness, of which the GII.4 and GII.17 genotypes are prevalent in China and most parts of the world. A simple and low-cost platform for rapid and accurate norovirus detection remains a major challenge. After the cell-free system and paper-based chromogenic system were optimized, a rapid and specific norovirus detection method was established based on norovirus-specific sequences in combination with toehold switch elements. The development of a visible color change during detection eliminates the need for any complicated instruments. We validated this strategy and its specificity in differentiating GII.4, GII.17, Zika virus, and human coronavirus HKU1. The results showed that the optimized detection system not only provided a simple and rapid detection method for the sufficient differentiation of the two norovirus genotypes but also showed high specificity and no cross-reactivity with other viruses. Using nucleic acid isothermal amplification, this assay showed a limit of detection of 0.5 pM for the GII.4 genotype and 2.6 fM for the GII.17 genotype in reactions that could be observed directly with the naked eye. Our results suggested that this paper-based colorimetric method could serve as a simple and low-cost visual detection method for pathogens in clinical samples, especially in remote or rural areas.SARS-COV-2 is a novel coronavirus discovered in Wuhan in December 30, 2019, and is a family of SARS-COV (severe acute respiratory syndrome coronavirus), that is, coronavirus family. After infection with SARS-COV-2, patients often experience fever, cough, gas prostration, dyspnea and other symptoms, which can lead to severe acute respiratory syndrome (SARS), kidney failure and even death. The SARS-COV-2 virus is particularly infectious and has led to a global infection crisis, with an explosion in the number of infections. Therefore, rapid and accurate detection of the virus plays a vital role. At present, many detection methods are limited in their wide application due to their defects such as high preparation cost, poor stability and complex operation process. Moreover, some methods need to be operated by professional medical staff, which can easily lead to infection. In order to overcome these problems, a Surface molecular imprinting technology (SM-MIT) is proposed for the first time to detect SARS-COV-2 virus.

Autoři článku: Halegood0579 (Stephansen Ottosen)