Nicholsonbasse6648

Z Iurium Wiki

Verze z 20. 10. 2024, 00:00, kterou vytvořil Nicholsonbasse6648 (diskuse | příspěvky) (Založena nová stránka s textem „BACKGROUND Very little is known about the role inflammation and mechanism(s) that enables the tumor to evade host's anti-tumor immune function during very…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

BACKGROUND Very little is known about the role inflammation and mechanism(s) that enables the tumor to evade host's anti-tumor immune function during very initial days of tumor establishment. Our study focuses on the immune response and local inflammation specially the pro-inflammatory and immune modifier components that are responsible for tumor-induced immune-suppression, tumor-associated macrophages (TAM) at tumor microenvironment in mouse model from very early to late phase of tumor progression. METHODS 1 × 105 Ascites tumor, EAC in Swiss albino or Sarcoma-180 (S-180) in Balb c mice strain were inoculated intra-peritonially and grouped into Control (0 day or no tumor), initial phase (3 day tumor), early (7 Day), Late (14 day) and terminal (21 day tumor) sets. SRPIN340 T cell activity, tumor niche macrophage, inflammatory signatures were studied using Confocal microscopy, flowcytometry, ELISA, q-RT PCR and Western blot. RESULTS We observed increased T cell infiltration at a very early stage of tumorigenesis in the umor site macrophages. AIMS Studies indicate that the pattern of shear stress determines the direction of endothelial progenitor cells (EPCs) differentiation. However, the mechanism remains largely unknown. Herein, we try to identify the role of oscillatory shear stress (OSS) in the transdifferentiation of EPCs into mesenchymal cells and the mechanism involved. MATERIALS AND METHODS OSS was applied to EPCs using the flow chamber system in vitro. Matrigel, Boyden chamber, and healing assay were used to observe the changes in EPCs function. Further, 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and/or western blot were performed to detect the expression of reactive oxygen species (ROS), p53 and PKCζ in EPCs. EPCs transduced with Lentivirus carrying Tp53 were implanted into the arterial vessel in the balloon injured rat model, and neointimal thickening was verified by HE staining. KEY FINDINGS OSS enhanced the expression of mesenchymal cell markers alpha-smooth muscle actin (α-SMA) and smooth muscle 22 alpha (SM22α) on EPCs. In the meantime, OSS time-dependently decreased p53 expression in EPCs, which was partially abolished by treatment with ROS scavenger N-acetylcysteine (NAC) or protein kinase C zeta (PKCζ) inhibitor Go6983. Moreover, the p53 agonist tenovin-1 attenuated the changes of OSS-mediated the mesenchymal cell markers and EPCs function. Besides, we also found that transplanting EPCs transfected with LV-Tp53 significantly inhibited neointimal thickening and promoted reendothelialization in vivo. SIGNIFICANCE This study demonstrates OSS-induced EPC transdifferentiation into mesenchymal cells and ROS/PKCζ/p53 pathway play an essential role in it. It may serve as a promising therapeutic target for cardiovascular disease in the future. Population aging, as well as the handling of age-associated diseases, is a worldwide increasing concern. Among them, Alzheimer's disease stands out as the major cause of dementia culminating in full dependence on other people for basic functions. However, despite numerous efforts, in the last decades, there was no new approved therapeutic drug for the treatment of the disease. Calcium-activated potassium channels have emerged as a potential tool for neuronal protection by modulating intracellular calcium signaling. Their subcellular localization is determinant of their functional effects. When located on the plasma membrane of neuronal cells, they can modulate synaptic function, while their activation at the inner mitochondrial membrane has a neuroprotective potential via the attenuation of mitochondrial reactive oxygen species in conditions of oxidative stress. Here we review the dual role of these channels in the aging phenotype and Alzheimer's disease pathology and discuss their potential use as a therapeutic tool. Previously, we have shown that Tfap2b, the gene encoding transcription factor AP-2β, is needed for normal mouse eye development. Specifically, targeted loss of Tfap2b in neural crest cells (NCCs)1 and their derivatives, particularly the periocular mesenchyme (POM), resulted in anterior segment defects affecting the cornea and angle tissue. These defects were further associated with an increase in intraocular pressure (IOP). The present study investigates the underlying changes in embryonic and postnatal POM cell development and differentiation caused by loss of AP-2β in the NCCs, particularly in the structures that control aqueous outflow, using Wnt1Cre+/-; Tfap2b-/lox; tdTomatolox/+ mice (AP-2β neural crest cell knockout or AP-2β NCC KO). Toluidine blue-stained sections and ultrathin sections stained with uranyl acetate and lead citrate were used to assess morphology and ultrastructure, respectively. Immunohistochemistry of KO and control eyes was performed at embryonic day (E) 15.5, E18.5, postnatal day (P) 1, P7 and P14 using phospho-histone H3 (PH3), α-smooth muscle actin (α-SMA), myocilin and endomucin antibodies, as well as a TUNEL assay. Conditional deletion of AP-2β in the NCC-derived POM resulted in defects that appeared during both embryogenesis and postnatal stages. Fate mapping of the knockout cells in the mutants revealed that the POM migrated appropriately into the eye during embryogenesis. However, during postnatal stages a significant reduction in POM proliferation in the angle region was observed in the mutants compared to controls. This was accompanied by a lack of expression of appropriate trabecular meshwork and Schlemm's canal markers. This is the first study to show that AP-2β is required for development and differentiation of the trabecular meshwork and Schlemm's canal. Together, these defects likely contributed to the elevated intraocular pressure (IOP) previously reported in the AP-2β NCC KO mice. Axonal transport blockade is an initial step in retinal ganglion cell (RGC) degeneration in glaucoma and targeting maintenance of normal axonal transport could confer neuroprotection. We present an objective, quantitative method for assessing axonal transport blockade in mouse glaucoma models. Intraocular pressure (IOP) was elevated unilaterally in CD1 mice for 3 days using intracameral microbead injection. Longitudinal sections of optic nerve head (ONH) were immunofluorescently labeled for myelin basic protein (MBP) and amyloid precursor protein (APP), which is transported predominantly orthograde by neurons. The beginning of the myelin transition zone, visualized with the MBP label, was more posterior with elevated IOP, 288.8 ± 40.9 μm, compared to normotensive control eyes, 228.7 ± 32.7 μm (p = 0.030, N = 6 pairs). Glaucomatous regional APP accumulations in retina, prelaminar ONH, unmyelinated ONH, and myelinated optic nerve were identified by objective qualification of pixels with fluorescent intensity greater than the 97.

Autoři článku: Nicholsonbasse6648 (Petterson Behrens)